Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 679: 108220, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812669

RESUMO

Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.


Assuntos
Movimento Celular , Músculo Liso Vascular/citologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Camundongos , NADPH Oxidase 1/metabolismo , Oxirredução/efeitos dos fármacos , Superóxidos/metabolismo
2.
J Cardiovasc Pharmacol ; 57(6): 696-701, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21394034

RESUMO

The aim of this study was to investigate the mechanisms underlying the vasorelaxant effect induced by the polyphenolic compounds found in red wine from Vale do São Francisco. In phenylephrine (10 µM) precontracted mesenteric artery rings, the red wine caused a concentration-dependent relaxation (maximum response to phenylephrine 10 µM = 87.5% ± 6.5%, n = 10). After endothelium removal, the vasorelaxant effect elicited by red wine was attenuated (28.4% ± 4.9%, n = 10). In addition, the vasorelaxant effect induced by red wine in rings pretreated with 100 µM of N(w)-nitro-l-arginine methyl ester and 10 µM of 1H-[1,2,4] oxadiazolo-[4,3-a]-quinoxalin-1-one was attenuated (23.4% ± 5.1%, n = 7 and 11.8% ± 2.7%, n = 6, respectively). Pretreatment with atropine did not affect the vasorelaxant effect induced by red wine (81% ± 3.9%, n = 6). Furthermore, in rabbit aortic endothelial cell line, red wine 100 and 300 µg/mL caused concentration-dependent increases in nitric oxide levels (58 ± 1; 82 ± 7.9; Δ% of fluorescence, n = 5, respectively). In conclusion, we suggest that the alcohol free-lyophilized red wine induces an endothelium-dependent vasorelaxant effect due, at least in part, to a secondary increase in the concentration of nitric oxide and that this effect might be associated with phenolic compounds found in the red wine.


Assuntos
Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Flavonoides/farmacologia , Artéria Mesentérica Superior/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fenóis/farmacologia , Vasodilatadores/farmacologia , Vinho/análise , Animais , Aorta/metabolismo , Brasil , Linhagem Celular , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/análise , Liofilização , Guanilato Ciclase/antagonistas & inibidores , Técnicas In Vitro , Masculino , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase/antagonistas & inibidores , Fenóis/análise , Polifenóis , Coelhos , Ratos , Ratos Wistar
3.
Life Sci ; 121: 110-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25500303

RESUMO

AIMS: Chronic kidney disease (CKD) progression is accompanied by systemic oxidative stress, which contributes to an increase in the risk of cardiovascular diseases (CVDs). N-acetylcysteine (NAC) is among the most studied antioxidants, but its therapeutic benefits in CKD-associated CVDs remain controversial. Here, we investigated whether NAC could inhibit the oxidative stress induced by uremia in vitro and in vivo. MAIN METHODS: Endothelial and smooth muscle cells were challenged with human uremic or non-uremic sera, and the effects of a pre-treatment with 2mM NAC were evaluated. Reactive oxygen species (ROS) production, protein oxidation and total glutathione/glutathione disulfide (tGSH/GSSG) ratios were measured. Five-sixths nephrectomized or sham-operated rats were orally treated (in the drinking water) with 60 mg/kg/day NAC or not treated for 53 days. Plasma cysteine/cystine reduction potential Eh(Cyss/2Cys) was determined as a novel marker of the systemic oxidative stress. KEY FINDINGS: NAC inhibited all the determined oxidative stress parameters, likely by increasing the tGSH/GSSG ratio, in both cell lines exposed to uremic serum. Orally administered NAC attenuated the systemic oxidative stress in uremic rats. SIGNIFICANCE: The present results indicate that NAC, by preventing GSH depletion in vascular cells exposed to uremic serum and by attenuating the systemic oxidative stress during CKD progression, emerges as a potential strategy to prevent the oxidative stress induced by uremic toxicity in the vascular system.


Assuntos
Acetilcisteína/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Uremia/sangue , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Células Cultivadas , Feminino , Glutationa/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Nefrectomia , Coelhos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/tratamento farmacológico
4.
Eur J Pharmacol ; 690(1-3): 170-5, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22796675

RESUMO

The reduced availability of nitric oxide (NO) is associated with cardiovascular diseases. Therefore, NO donors such as organic nitrates are useful for the treatment of these disorders. The 2-nitrate-1,3-dibuthoxypropan (NDBP) is an organic nitrate synthesized from glycerin, which the pharmacological effects have not been investigated. In this study we evaluated the vasorelaxant effect induced by NDBP in superior mesenteric artery from rats. In phenylephrine pre-contracted artery rings, NDBP (10(-8)-10(-4)M) elicited concentration-dependent and endothelium-independent relaxation, which were attenuated by hydroxocobalamin-HDX (30 µM), a NO extracellular scavenger, and 1-H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one-ODQ (10 µM), an inhibitor of soluble guanylyl cyclase (sGC). In addition, the NDBP-induced relaxation was reduced by non-selective K(+) channels blocker KCl (20 mM) or selective K(+) channels blockers such as tetraethylammonium-TEA (B(KCa), 1 mM), charybdotoxin-ChTX (B(KCa), 100 nM), glibenclamide (K(ATP), 1µM) and 4-aminopyridine-4-AP (K(V), 1mM). In preparations with ODQ (10 µM) plus TEA (1 mM), the response was virtually abolished. In rat smooth muscle cells culture, NDBP (10(-6)-10(-4)M) caused concentration-dependent increases in NO levels. These findings suggest that NDBP causes vasorelaxation through NO generation and activation of the sCG/cGMP/PKG pathway.


Assuntos
Artérias Mesentéricas/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Propano/análogos & derivados , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Sequestradores de Radicais Livres/farmacologia , Glicerol/química , Guanilato Ciclase/antagonistas & inibidores , Técnicas In Vitro , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitratos/síntese química , Nitratos/química , Óxido Nítrico/biossíntese , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/metabolismo , Oxidiazóis/farmacologia , Fenilefrina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Propano/síntese química , Propano/química , Propano/metabolismo , Propano/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Guanilil Ciclase Solúvel , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/síntese química , Vasodilatadores/química , Vasodilatadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa