Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 51(11): 3428-3439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795121

RESUMO

PURPOSE: Somatostatin receptor (SSTR) imaging features are predictive of treatment outcome for neuroendocrine tumor (NET) patients receiving peptide receptor radionuclide therapy (PRRT). However, comprehensive (all metastatic lesions), longitudinal (temporal variation), and lesion-level measured features have never been explored. Such features allow for capturing the heterogeneity in disease response to treatment. Furthermore, models combining these features are lacking. In this work we evaluated the predictive power of comprehensive, longitudinal, lesion-level 68GA-SSTR-PET features combined with a multivariate linear regression (MLR) model. METHODS: This retrospective study enrolled NET patients treated with [177Lu]Lu-DOTA-TATE and imaged with [68Ga]Ga-DOTA-TATE at baseline and post-therapy. All lesions were segmented, anatomically labeled, and longitudinally matched. Lesion-level uptake and variation in uptake were measured. Patient-level features were engineered and selected for modeling of progression-free survival (PFS). The model was validated via concordance index, patient classification (ROC analysis), and survival analysis (Kaplan-Meier and Cox proportional hazards). The MLR was benchmarked against single feature predictions. RESULTS: Thirty-six NET patients were enrolled and stratified into poor and good responders (PFS ≥ 25 months). Four patient-level features were selected, the MLR concordance index was 0.826, and the AUC was 0.88 (0.85 specificity, 0.81 sensitivity). Survival analysis led to significant patient stratification (p<.001) and hazard ratio (3⨯10-5). Lastly, in a benchmark study, the MLR modeling approach outperformed all the single feature predictors. CONCLUSION: Comprehensive, lesion-level, longitudinal 68GA-SSTR-PET analysis, combined with MLR modeling, leads to excellent predictions of PRRT outcome in NET patients, outperforming non-comprehensive, patient-level, and single time-point feature predictions. MESSAGE: Neuroendocrine tumor, peptide receptor radionuclide therapy, Somatostatin Receptor Imaging, Outcome Prediction, Treatment Response Assessment.


Assuntos
Tumores Neuroendócrinos , Octreotida , Compostos Organometálicos , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Masculino , Feminino , Pessoa de Meia-Idade , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico , Idoso , Estudos Retrospectivos , Resultado do Tratamento , Adulto , Tomografia por Emissão de Pósitrons , Prognóstico , Estudos Longitudinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa