Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 41, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400879

RESUMO

In the search of new enzymatic activities with a possible industrial application, we focused on those microorganisms and their molecular mechanisms that allow them to succeed in the environment, particularly in the proteolytic activity and its central role in the microorganisms' successful permanence. The use of highly active serine proteases for industrial applications is a modern need, especially for the formulation of detergents, protein processing, and hair removal from animal skins. This report provides the isolation and identification of a highly proteolytic fragment derived from DegQ produced by a Pseudomonas fluorescens environmental strain isolated from a frog carcass. Zymograms demonstrate that a 10 kDa protein mainly generates the total proteolytic activity of this strain, which is enhanced by the detergent SDS. Mass spectroscopy analysis revealed that the protein derived a couple of peptides, the ones showing the highest coverage belonging to DegQ. Interestingly, this small protein fragment contains a PDZ domain but no obvious residues indicating that it is a protease. Protein model analysis shows that this fragment corresponds to the main PDZ domain from DegQ, and its unique sequence and structure render a proteolytic peptide. The results presented here indicate that a novel DegQ fragment is sufficient for obtaining high protease activity highlighting that the analysis of environmental microorganisms can render new strains or enzymes with helpful biotechnological characteristics.


Assuntos
Domínios PDZ , Pseudomonas , Animais , Pseudomonas/genética , Pseudomonas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Peptídeos , Serina Proteases
2.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446705

RESUMO

The signal transduction paradigm in bacteria involves two-component systems (TCSs). Asgardarchaeota are archaea that may have originated the current eukaryotic lifeforms. Most research on these archaea has focused on eukaryotic-like features, such as genes involved in phagocytosis, cytoskeleton structure, and vesicle trafficking. However, little attention has been given to specific prokaryotic features. Here, the sequence and predicted structural features of TCS sensor kinases analyzed from two metagenome assemblies and a genomic assembly from cultured Asgardian archaea are presented. The homology of the sensor kinases suggests the grouping of Lokiarchaeum closer to bacterial homologs. In contrast, one group from a Lokiarchaeum and a meta-genome assembly from Candidatus Heimdallarchaeum suggest the presence of a set of kinases separated from the typical bacterial TCS sensor kinases. AtoS and ArcB homologs were found in meta-genome assemblies along with defined domains for other well-characterized sensor kinases, suggesting the close link between these organisms and bacteria that may have resulted in the metabolic link to the establishment of symbiosis. Several kinases are predicted to be cytoplasmic; some contain several PAS domains. The data shown here suggest that TCS kinases in Asgardian bacteria are witnesses to the transition from bacteria to eukaryotic organisms.


Assuntos
Archaea , Células Eucarióticas , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas , Evolução Molecular , Filogenia
3.
PLoS Pathog ; 15(8): e1008016, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31461501

RESUMO

Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, ß-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host.


Assuntos
Membrana Celular/fisiologia , Entamoeba histolytica/enzimologia , Entamebíase/parasitologia , Esfingomielina Fosfodiesterase/metabolismo , Trofozoítos/metabolismo , Cálcio/metabolismo , Entamebíase/metabolismo , Humanos , Esfingomielina Fosfodiesterase/genética , Trofozoítos/crescimento & desenvolvimento
4.
Antonie Van Leeuwenhoek ; 114(2): 209-221, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394209

RESUMO

Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.


Assuntos
Entamoeba histolytica , Poliadenilação , Entamoeba histolytica/genética
5.
Sensors (Basel) ; 21(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300415

RESUMO

Industry 4.0, allied with the growth and democratization of Artificial Intelligence (AI) and the advent of IoT, is paving the way for the complete digitization and automation of industrial processes. Maintenance is one of these processes, where the introduction of a predictive approach, as opposed to the traditional techniques, is expected to considerably improve the industry maintenance strategies with gains such as reduced downtime, improved equipment effectiveness, lower maintenance costs, increased return on assets, risk mitigation, and, ultimately, profitable growth. With predictive maintenance, dedicated sensors monitor the critical points of assets. The sensor data then feed into machine learning algorithms that can infer the asset health status and inform operators and decision-makers. With this in mind, in this paper, we present TIP4.0, a platform for predictive maintenance based on a modular software solution for edge computing gateways. TIP4.0 is built around Yocto, which makes it readily available and compliant with Commercial Off-the-Shelf (COTS) or proprietary hardware. TIP4.0 was conceived with an industry mindset with communication interfaces that allow it to serve sensor networks in the shop floor and modular software architecture that allows it to be easily adjusted to new deployment scenarios. To showcase its potential, the TIP4.0 platform was validated over COTS hardware, and we considered a public data-set for the simulation of predictive maintenance scenarios. We used a Convolution Neural Network (CNN) architecture, which provided competitive performance over the state-of-the-art approaches, while being approximately four-times and two-times faster than the uncompressed model inference on the Central Processing Unit (CPU) and Graphical Processing Unit, respectively. These results highlight the capabilities of distributed large-scale edge computing over industrial scenarios.


Assuntos
Internet das Coisas , Inteligência Artificial , Indústrias , Aprendizado de Máquina , Redes Neurais de Computação
6.
Arch Microbiol ; 201(7): 999-1008, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31062059

RESUMO

Cellular membrane is a key component for maintaining cell shape and integrity. The classical membrane structure and function by Singer and Nicolson groundbreaking model has depicted the membrane as a homogeneous fluid structure. This view has changed by the discovery of discrete domains containing different lipid compositions, called lipid rafts, which play a key role in signal transduction in eukaryotic cells. In the past few years, lipid raft-like structures have been found in bacteria also, constituted by cardiolipin and other modified lipids, perhaps involved in generating a specific site for protein clustering. Here, we report the analysis of a protein termed YqiK from Escherichia coli, a prohibitin homolog that has been implicated in stress sensing by the formation of membrane-associated microdomains. The E. coli yqiK-deficient mutant strain showed an enhanced swimming behavior and was resistant to ampicillin but its response to other stressing conditions was similar to that of the wild-type strain. The abnormal swimming behavior is reversed when the protein is expressed in trans from a plasmid. Also, we demonstrate that YqiK is not redundant with QmcA, another flotillin homolog found in E. coli. Our results, along with the data available in the literature, suggest that YqiK may be involved in the formation of discrete membrane-associated signaling complexes that regulate and agglomerate signaling proteins to generate cell response to chemotaxis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Membrana Celular/metabolismo , Quimiotaxia/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Microdomínios da Membrana , Proteínas de Membrana/genética , Mutação , Plasmídeos/genética , Proibitinas , Proteínas Repressoras/genética , Transdução de Sinais
7.
J Exp Biol ; 222(Pt 5)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30718372

RESUMO

In invertebrates, it has recently been reported that secondary sexual characteristics (SSCs) reflect the antioxidant defense of their bearers, but it is not known what physiological link maintains the honesty of those signals. Here, we used the damselfly Hetaerina americana to test whether juvenile hormone plays such a role. First, we analyzed whether oxidative damage is a real threat in natural damselfly populations by examining the accumulation of oxidized guanines as a function of age in males. Then, we injected paraquat (a pro-oxidant agent) and added the juvenile hormone analog methoprene (JHa) to the experimental group and the JHa vehicle (acetone) to the control group, to determine whether JHa increases the levels of pro-oxidants and antioxidants. We found that DNA oxidation increased with age, and that levels of hydrogen peroxide and superoxide dismutase, but not catalase or glutathione, were elevated in the JHa group compared with the control group. We propose that juvenile hormone is a mediator of the relationship between SSCs and antioxidant capacity and, based on the literature, we know that JHa suppresses the immune response. We therefore suggest that juvenile hormone is a molecular mediator of the general health of males, which is reflected in their SSCs.


Assuntos
Hormônios Juvenis/farmacologia , Metoprene/farmacologia , Odonatos/fisiologia , Oxidantes/farmacologia , Estresse Oxidativo , Paraquat/farmacologia , Fatores Etários , Animais , Antioxidantes/metabolismo , DNA/metabolismo , Masculino , Metoprene/administração & dosagem , Oxidantes/administração & dosagem , Paraquat/administração & dosagem
8.
Parasitol Res ; 118(10): 3019-3031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473857

RESUMO

The protozoan parasite Trichomonas vaginalis is a common human pathogen from one of the earliest-diverging eukaryotic lineages. At the transcriptional level, the highly conserved Inr element of RNA pol II-transcribed genes surrounds the transcription start site and is recognised by IBP39, a protein exclusive of T. vaginalis. Typical TATA boxes have not been identified in this organism but, in contrast, BLAST analyses of the T. vaginalis genome identified two genes encoding putative TATA-binding proteins (herein referred to as TvTBP1 and TvTBP2). The goal of this work was to characterise these two proteins at the molecular level. Our results show that both TvTBPs theoretically adopt the saddle-shaped structure distinctive to TBPs and both Tvtbp genes are expressed in T. vaginalis. TvTBP1 did not complement a Saccharomyces cerevisiae mutant lacking TBP; however, TvTBP1 and TvTBP2 proteins bound T. vaginalis DNA promoter sequences in EMSA assays. We propose that TvTBP1 may be part of the preinitiation transcription complex in T. vaginalis since TvTBP1 recombinant protein was able to bind IBP39 in vitro. This work represents the first approach towards the characterisation of general transcription factors in this early divergent organism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Protozoários/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Trichomonas vaginalis/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Trichomonas vaginalis/genética
9.
AAPS PharmSciTech ; 20(5): 198, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127389

RESUMO

In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that ∼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Apoptose/efeitos dos fármacos , Citotoxinas/síntese química , Nanosferas/química , Paclitaxel/síntese química , Óleos de Plantas/síntese química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/farmacocinética , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Células HeLa , Humanos , Mentha piperita , Paclitaxel/farmacocinética , Óleos de Plantas/farmacocinética , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacocinética , Tensoativos/síntese química , Tensoativos/farmacocinética , Vitamina E/síntese química , Vitamina E/farmacocinética
10.
FEMS Yeast Res ; 18(5)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718196

RESUMO

Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In Candida albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize ß1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.


Assuntos
Candida tropicalis/genética , Candida tropicalis/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/microbiologia , Mananas/metabolismo , Glicoproteínas de Membrana/metabolismo , Candida tropicalis/patogenicidade , Parede Celular/metabolismo , Células Cultivadas , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fagocitose , Virulência
11.
Antonie Van Leeuwenhoek ; 111(2): 285-295, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28956188

RESUMO

The genome sequence of the plant pathogen Fusarium oxysporum f. sp. lycopersici contains a single gene encoding a predicted poly(ADP-ribose) glycohydrolase (FOXG_05947.2, PARG). Here, we assessed whether this gene has a role as a global regulator of DNA repair or in virulence as an ADP ribosylating toxin homologue of bacteria. The PARG protein was purified after expressing its encoding gene in Escherichia coli. Its inhibition by 6,9-diamino-2-ethoxyacridine lactate monohydrate and tannins was similar to its human orthologue that is involved in DNA repair. A deletion strain of F. oxysporum f. sp. lycopersici showed no growth defects and was not affected in pathogenicity. Together, our results indicate that the PARG protein of F. oxysporum f. sp. lycopersici is involved in DNA repair and does not act in pathogenicity as an effector.


Assuntos
Fusarium/química , Fusarium/genética , Glicosídeo Hidrolases/genética , Sequência de Aminoácidos , Dano ao DNA , Reparo do DNA , Fusarium/classificação , Fusarium/isolamento & purificação , Genes Fúngicos , Genoma Fúngico , Glicosídeo Hidrolases/química , Mutação , Análise de Sequência de DNA , Virulência
12.
Antonie Van Leeuwenhoek ; 111(2): 297-309, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28975438

RESUMO

Fungi are organisms capable of growing in a myriad of conditions and respond to counteract environmental cues. Several locations in the world are polluted with oil and its derivatives, and some microorganisms tolerant to these compounds have been isolated. Some fungi can grow in the presence of molecules such as polycyclic aromatic hydrocarbons as sole carbon sources. In this report, we further characterized the induced enzymes with phenanthrene from Mucor circinelloides YR-1 strain, isolated from a polluted field near a petrochemical facility in México. We identified a putative oxidase that is induced when growth with phenanthrene as sole carbon source at a pH of 8.5 and is NADP+ dependent. We show that this enzyme bears naphthalene dihydrodiol dehydrogenase activity with substrate preference for the cis-naphthalene over the trans-naphthalene, with an optimal pH in the range of 8-10. Mass spectrometry analysis revealed that the induced enzyme belongs to the NADP+ oxidase family enzymes with the typical Rossmann-fold for NADP+ binding. This enzyme seems to form a high molecular weight structure (~ 541 kDa) and with a monomer of 57 kDa, suggesting that the multimer is constituted of 10 subunits. Our findings contribute to understanding of the roles that dihydrodiol dehydrogenases have in organisms exposed to toxic compounds in the environment and can regulate their expression.


Assuntos
Oxirredutases do Álcool/metabolismo , Mucor/efeitos dos fármacos , Mucor/fisiologia , Complexos Multiproteicos/metabolismo , Naftalenos/metabolismo , Oxirredutases/metabolismo , Compostos Policíclicos/farmacologia , Oxirredutases do Álcool/química , Carbono , Ativação Enzimática , Glicosilação , Espectrometria de Massas , Modelos Moleculares , Peso Molecular , Conformação Proteica
13.
Exp Parasitol ; 187: 86-92, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476758

RESUMO

Entamoeba histolytica genetic organization and genome structure is complex and under intense research. The genome is fully sequenced, and several tools have been developed for the molecular study of this organism. Nevertheless, good protein tracking tags that are easy to measure and image, like the fluorescent proteins are lacking. In this report, we codon-optimized the red fluorescent protein from the coral Discosoma striata (DsRFP) for its use in E. histolytica and demonstrated functionality in vivo. We envision that this protein can be widely used for the development of transcriptional reporter systems and protein-tagging applications.


Assuntos
Entamoeba histolytica/metabolismo , Substâncias Luminescentes/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Antozoários/química , Clonagem Molecular , Códon/fisiologia , Entamoeba histolytica/genética , Entamoeba histolytica/patogenicidade , Citometria de Fluxo , Expressão Gênica , Proteínas Luminescentes/genética , Microscopia Confocal , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Esfingomielina Fosfodiesterase/genética , Virulência , Proteína Vermelha Fluorescente
14.
Exp Parasitol ; 194: 38-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30253133

RESUMO

Amoebiasis is a worldwide health problem caused by the pathogen Entamoeba histolytica. Several virulence factors have been implicated in host invasion, immune evasion, and tissue damage. There are still new factors that remain to be elucidated and characterized. In this work, we obtained amoebic transfectants overexpressing three of the neutral sphingomyelinase enzymes encoded in the E. histolytica genome. The EhnSM3 overexpression induced an increase in hemolytic and cytotoxic activities, besides an increase in gene expression of amoebapore A, B, and C. Meanwhile the EhnSM1 and EhnSM2 overexpression caused an increase in cytopathic activity. In all the neutral sphingomyelinases overexpressing strains, the gene expression levels for cysteine proteinase 5, adhesin 112 and, heavy and light Gal/GalNAc lectin subunits were not affected. We propose that the increase of cytotoxic and lytic effect of EhnSM3 overexpressed strain can be related to the sum of the effect of EhnSM3 plus amoebapores, in a process cell contact-dependent or as mediator by inducing the gene expression of amoebapores enabling a link between EhnSM3 with the virulence phenotype in E. histolytica. Our results suggest a differential role for neutral sphingomyelinases in E. histolytica virulence.


Assuntos
Entamoeba histolytica/patogenicidade , Esfingomielina Fosfodiesterase/metabolismo , Animais , Cães , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Eritrócitos/metabolismo , Expressão Gênica , Genoma de Protozoário , Hemólise , Humanos , Células Madin Darby de Rim Canino , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/isolamento & purificação , Esfingomielinas/metabolismo , Transfecção , Virulência
15.
Molecules ; 23(6)2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857551

RESUMO

Cloning and expression plasmids are the workhorses of modern molecular biology. Despite the pathway paved by synthetic biology, laboratories around the globe still relay on standard cloning techniques using plasmids with reporter proteins for positive clone selection, such as ß-galactosidase alpha peptide complementation for blue/white screening or ccdB, which encodes for a toxic DNA gyrase. These reporters, when interrupted, serve as a positive clone detection system. In the present report, we show that molecular cloning plasmids bearing the coding sequence for a 25.4 kDa protein, AmilCP, encoded by a 685 bp gene, that is well expressed in Escherichia coli, render blue-purple colonies. Using this reporter protein, we developed and tested a cloning system based on the constitutive expression of the non-toxic AmilCP protein, that once interrupted, the loss of purple color serves to facilitate positive clone selection. The main advantage of this system is that is less expensive than other systems since media do not contain chromogenic markers such as X-gal, which is both expensive and cumbersome to prepare and use, or inductors such as IPTG. We also designed an inducible expression plasmid suitable for recombinant protein expression that also contains AmilCP cloning selection marker, a feature not commonly found in protein expression plasmids. The use of chromogenic reporters opens an important avenue for its application in other organisms besides E. coli for clone selection or even for mutant selection.


Assuntos
Proteínas de Bactérias/genética , Evolução Clonal , Clonagem Molecular , Expressão Gênica , Plasmídeos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ordem dos Genes , Genes Reporter , Modelos Moleculares , Conformação Proteica
16.
Arch Microbiol ; 197(6): 815-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25983135

RESUMO

Bacterial reporter assays are powerful tools used to study the effect of different compounds that affect the physiology of cellular processes. Most bacterial reporters are luciferase based and can be monitored in real time. In the present study we designed and implemented two sets of Escherichia coli bacterial reporter assays, using a multicopy plasmid system. Each reporter strain was constructed using either green fluorescent protein or ß-galactosidase (LacZ) proteins. The designed reporter strains are capable of responding in a specific manner to molecules that either oxidative stress, or membrane, protein, or DNA damage. In order to respond to the desired stimulus, promoter sequences from E. coli were used. These sequences correspond to the promoter of the major catalase (KatG) activated with cellular oxidative damage, the promoter of the ß-hydroxydecanoyl-ACP dehydrase (FabA) which is activated with membrane perturbation, the promoter of DNA recombinase (RecA) which is activated by DNA lesions. For protein misfolding, the promoter of the heat-shock responsive chaperon (DnaK) was used. Our constructs displayed activation to damage from specific stimuli, and low response to nonspecific stimuli was detected. Our results suggest that these types of bacterial reporter strains can be used in semiquantitative (fluorometric) and qualitative (ß-galactosidase activity) studies of different xenobiotic substances and pollutants.


Assuntos
Técnicas Biossensoriais , Colorimetria/métodos , Escherichia coli , Proteínas de Fluorescência Verde , Plasmídeos , Sequência de Bases , Dano ao DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estresse Oxidativo/fisiologia , Regiões Promotoras Genéticas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
Antioxidants (Basel) ; 13(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539865

RESUMO

The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.

18.
PeerJ ; 12: e17496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938619

RESUMO

Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.


Assuntos
Bactérias , Pirofosfatase Inorgânica , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Bactérias/enzimologia , Fungos/enzimologia , Difosfatos/metabolismo , Difosfatos/química
19.
Microorganisms ; 12(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38674737

RESUMO

The Escherichia coli Keio mutant collection has been a tool for assessing the role of specific genes and determining their role in E. coli physiology and uncovering novel functions. In this work, specific mutants in the DNA repair pathways and oxidative stress response were evaluated to identify the primary targets of silver nanoparticles (NPs) and their mechanism of action. The results presented in this work suggest that NPs mainly target DNA via double-strand breaks and base modifications since the recA, uvrC, mutL, and nfo mutants rendered the most susceptible phenotype, rather than involving the oxidative stress response. Concomitantly, during the establishment of the control conditions for each mutant, the katG and sodA mutants showed a hypersensitive phenotype to mitomycin C, an alkylating agent. Thus, we propose that KatG catalase plays a key role as a cellular chaperone, as reported previously for the filamentous fungus Neurospora crassa, a large subunit catalase. The Keio collection mutants may also be a key tool for assessing the resistance mechanism to metallic NPs by using their potential to identify novel pathways involved in the resistance to NPs.

20.
Mol Biochem Parasitol ; 260: 111647, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002760

RESUMO

Entamoeba histolytica, an intestinal parasite of global significance, poses substantial health risks with its associated high morbidity and mortality rates. Despite the current repertoire of molecular tools for the study of gene function in, the regulatory mechanisms governing its pathogenicity remain largely unexplored. This knowledge gap underscores the need to elucidate key genetic determinants orchestrating cellular functions critical to its virulence. Previously, our group generated an avirulent strain, termed UG10, with the same genetic background as the HM1:IMSS strain. UG10 strain, despite showing normal expression levels of well-known virulence factors, was unable to perform in-vitro and in-vivo activities related to amoebic virulence. In this study, we aimed to uncover the genome-wide modifications that rendered the avirulent phenotype of the UG10 strain through whole-genome sequencing. As a complementary approach, we conducted Methylated DNA Immunoprecipitation coupled with sequencing (MeDIP-seq) analysis on both the highly virulent HM1:IMSS strain and the low-virulence UG10 strain to uncover the genome-wide methylation profile. These dual methodologies revealed two aspects of the UG10 avirulent strain. One is the random integration of fragments from the ribosomal gene cluster and tRNA genes, ranging from 120 to 400 bp; and secondly, a clear, enriched methylation profile in the coding and non-coding strand relative to the start codon sequence in genes encoding small GTPases, which is associated with the previously described avirulent phenotype. This study provides the foundation to explore other genetic and epigenetic regulatory circuitries in E. histolytica and novel targets to understand the pathogenic mechanism of this parasite.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa