Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 61(6): 2530-2536, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34038123

RESUMO

While accurate prediction of aqueous solubility remains a challenge in drug discovery, machine learning (ML) approaches have become increasingly popular for this task. For instance, in the Second Challenge to Predict Aqueous Solubility (SC2), all groups utilized machine learning methods in their submissions. We present SolTranNet, a molecule attention transformer to predict aqueous solubility from a molecule's SMILES representation. Atypically, we demonstrate that larger models perform worse at this task, with SolTranNet's final architecture having 3,393 parameters while outperforming linear ML approaches. SolTranNet has a 3-fold scaffold split cross-validation root-mean-square error (RMSE) of 1.459 on AqSolDB and an RMSE of 1.711 on a withheld test set. We also demonstrate that, when used as a classifier to filter out insoluble compounds, SolTranNet achieves a sensitivity of 94.8% on the SC2 data set and is competitive with the other methods submitted to the competition. SolTranNet is distributed via pip, and its source code is available at https://github.com/gnina/SolTranNet.


Assuntos
Aprendizado de Máquina , Água , Software , Solubilidade
2.
J Chem Inf Model ; 60(9): 4200-4215, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32865404

RESUMO

One of the main challenges in drug discovery is predicting protein-ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measuring generalization to new targets, and there does not exist a standard data set of sufficient size to compare performance between models. We present a new data set for structure-based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein Data Bank, and perform a comprehensive evaluation of grid-based convolutional neural network (CNN) models on this data set. We also demonstrate how the partitioning of the training data and test data can impact the results of models trained with the PDBbind data set, how performance improves by adding more lower-quality training data, and how training with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our best performing model, an ensemble of five densely connected CNNs, achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for the CrossDocked2020 set, we establish the first standardized data set for training machine learning models to recognize ligands in noncognate target structures while also greatly expanding the number of poses available for training. In order to facilitate community adoption of this data set for benchmarking protein-ligand binding affinity prediction, we provide our models, weights, and the CrossDocked2020 set at https://github.com/gnina/models.


Assuntos
Desenho de Fármacos , Redes Neurais de Computação , Bases de Dados de Proteínas , Ligantes , Ligação Proteica
3.
J Comput Aided Mol Des ; 33(1): 19-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992528

RESUMO

We assess the ability of our convolutional neural network (CNN)-based scoring functions to perform several common tasks in the domain of drug discovery. These include correctly identifying ligand poses near and far from the true binding mode when given a set of reference receptors and classifying ligands as active or inactive using structural information. We use the CNN to re-score or refine poses generated using a conventional scoring function, Autodock Vina, and compare the performance of each of these methods to using the conventional scoring function alone. Furthermore, we assess several ways of choosing appropriate reference receptors in the context of the D3R 2017 community benchmarking challenge. We find that our CNN scoring function outperforms Vina on most tasks without requiring manual inspection by a knowledgeable operator, but that the pose prediction target chosen for the challenge, Cathepsin S, was particularly challenging for de novo docking. However, the CNN provided best-in-class performance on several virtual screening tasks, underscoring the relevance of deep learning to the field of drug discovery.


Assuntos
Catepsinas/química , Simulação de Acoplamento Molecular , Redes Neurais de Computação , Algoritmos , Sítios de Ligação , Bases de Dados de Proteínas , Descoberta de Drogas/métodos , Ligantes , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
5.
ACS Omega ; 8(44): 41680-41688, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970017

RESUMO

The success of machine learning is, in part, due to a large volume of data available to train models. However, the amount of training data for structure-based molecular property prediction remains limited. The previously described CrossDocked2020 data set expanded the available training data for binding pose classification in a molecular docking setting but did not address expanding the amount of receptor-ligand binding affinity data. We present experiments demonstrating that imputing binding affinity labels for complexes without experimentally determined binding affinities is a viable approach to expanding training data for structure-based models of receptor-ligand binding affinity. In particular, we demonstrate that utilizing imputed labels from a convolutional neural network trained only on the affinity data present in CrossDocked2020 results in a small improvement in the binding affinity regression performance, despite the additional sources of noise that such imputed labels add to the training data. The code, data splits, and imputation labels utilized in this paper are freely available at https://github.com/francoep/ImputationPaper.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa