Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 157: 90-97, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915138

RESUMO

Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.


Assuntos
Envelhecimento/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Biomarcadores , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Coração/fisiopatologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Lisina/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Sarcômeros/metabolismo
2.
J Cell Biochem ; 120(11): 19004-19018, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246344

RESUMO

Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions.


Assuntos
Apoptose , Caspases , Distúrbios Distônicos , Mutação da Fase de Leitura , Proteínas de Ligação a RNA , Animais , Caspases/genética , Caspases/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/patologia , Ativação Enzimática , Células HeLa , Humanos , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/genética
3.
J Cardiovasc Aging ; 3(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38235059

RESUMO

Introduction: Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim: We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results: The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion: We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.

4.
Life Sci ; 298: 120469, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283176

RESUMO

AIMS: Metabolic function/dysfunction is central to aging biology. This is well illustrated by the Polymerase Gamma (POLG) mutant mouse where a key residue of the mitochondrial DNA polymerase is mutated (D257A), causing loss of mitochondrial DNA stability and dramatically accelerated aging processes. Given known cardiac phenotypes in the POLG mutant, we sought to characterize the course of cardiac dysfunction in the POLG mutant to guide future intervention studies. MATERIALS AND METHODS: Cardiac echocardiography and terminal hemodynamic analyses were used to define the course of dysfunction in the right and left cardiac ventricles in the POLG mutant. We also conducted RNA-seq analysis on cardiac right ventricles to identify mechanisms engaged by severe metabolic dysfunction and compared this analysis to several publically available datasets. KEY FINDINGS: Interesting sex differences were noted as female POLG mutants died earlier than male POLG mutants and LV chamber diameters were impacted earlier in females than males. Moreover, male mutants showed LV wall thinning while female mutant LV walls were thicker. Both males and females displayed significant RV hypertrophy. POLG mutants displayed a gene expression pattern associated with inflammation, fibrosis, and heart failure. Finally, comparative omics analyses of publically available data provide additional mechanistic and therapeutic insights. SIGNIFICANCE: Aging-associated cardiac dysfunction is a growing clinical problem. This work uncovers sex-specific cardiac responses to severe metabolic dysfunction that are reminiscent of patterns seen in human heart failure and provides insights to the molecular mechanisms engaged downstream of severe metabolic dysfunction that warrant further investigation.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Masculino , Camundongos , Mutação , Remodelação Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa