Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(2): e3001989, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745682

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.


Assuntos
COVID-19 , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/metabolismo , Caquexia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Hipóxia
2.
Nat Metab ; 6(5): 825-836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622413

RESUMO

Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.


Assuntos
Gluconeogênese , Histona Desacetilases , Fígado , Camundongos Knockout , Correpressor 1 de Receptor Nuclear , Correpressor 2 de Receptor Nuclear , Receptores de Glucocorticoides , Gluconeogênese/genética , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Camundongos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/genética
3.
bioRxiv ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34909769

RESUMO

Lethal COVID-19 is associated with respiratory failure that is thought to be caused by acute respiratory distress syndrome (ARDS) secondary to pulmonary infection. To date, the cellular pathogenesis has been inferred from studies describing the expression of ACE2, a transmembrane protein required for SARS-CoV-2 infection, and detection of viral RNA or protein in infected humans, model animals, and cultured cells. To functionally test the cellular mechanisms of COVID-19, we generated hACE2 fl animals in which human ACE2 (hACE2) is expressed from the mouse Ace2 locus in a manner that permits cell-specific, Cre-mediated loss of function. hACE2 fl animals developed lethal weight loss and hypoxemia within 7 days of exposure to SARS-CoV-2 that was associated with pulmonary infiltrates, intravascular thrombosis and patchy viral infection of lung epithelial cells. Deletion of hACE2 in lung epithelial cells prevented viral infection of the lung, but not weight loss, hypoxemia or death. Inhalation of SARS-CoV-2 by hACE2 fl animals resulted in early infection of sustentacular cells with subsequent infection of neurons in the neighboring olfactory bulb and cerebral cortexâ€" events that did not require lung epithelial cell infection. Pharmacologic ablation of the olfactory epithelium or Foxg1 Cre mediated deletion of hACE2 in olfactory epithelial cells and neurons prevented lethality and neuronal infection following SARS-CoV-2 infection. Conversely, transgenic expression of hACE2 specifically in olfactory epithelial cells and neurons in Foxg1 Cre ; LSL- hACE2 mice was sufficient to confer neuronal infection associated with respiratory failure and death. These studies establish mouse loss and gain of function genetic models with which to genetically dissect viral-host interactions and demonstrate that lethal disease due to respiratory failure may arise from extrapulmonary infection of the olfactory epithelium and brain. Future therapeutic efforts focused on preventing olfactory epithelial infection may be an effective means of protecting against severe COVID-19.

4.
J Invest Dermatol ; 139(2): 300-307, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30291846

RESUMO

Activation of the hedgehog pathway is causative of virtually all sporadic and Gorlin syndrome-related basal cell carcinomas (BCCs), with loss of function of Ptc1 being the most common genomic lesion. Sporadic BCCs also overexpress Dsg2, a desmosomal cadherin normally found in the basal layer. Using a mouse model of Gorlin syndrome (Ptc1+/lacZ mice), we found that overexpressing Dsg2 in the basal layer (K14-Dsg2/Ptc1+/lacZ mice) or the superficial epidermis (Inv-Dsg2/Ptc1+/lacZ mice) resulted in increased spontaneous BCC formation at 3 and 6 months, respectively. The tumors did not show loss of heterozygosity of Ptc1, despite high levels of Gli1 and phosphorylated Stat3. A panel of sporadic human BCCs showed increased staining of both Dsg2 and phosphorylated Stat3 in all nine samples. Overexpression of Dsg2 in ASZ001 cells, a Ptc1-/- BCC cell line, induced Stat3 phosphorylation and further increased Gli1 levels, in both an autocrine and paracrine manner. Three different Stat3 inhibitors reduced viability and Gli1 expression in ASZ001 cells but not in HaCaT cells. Conversely, stimulation of Stat3 in ASZ001 cells with IL-6 increased Gli1 expression. Our results indicate that Dsg2 enhances canonical hedgehog signaling downstream of Ptc1 to promote BCC development through the activation of phosphorylated Stat3 and regulation of Gli1 expression.


Assuntos
Síndrome do Nevo Basocelular/patologia , Desmogleína 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/patologia , Animais , Síndrome do Nevo Basocelular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Receptor Patched-1/genética , Fosforilação , Fator de Transcrição STAT3/antagonistas & inibidores , Pele/patologia , Neoplasias Cutâneas/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa