Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8029): 398-406, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198646

RESUMO

The brain functions as a prediction machine, utilizing an internal model of the world to anticipate sensations and the outcomes of our actions. Discrepancies between expected and actual events, referred to as prediction errors, are leveraged to update the internal model and guide our attention towards unexpected events1-10. Despite the importance of prediction-error signals for various neural computations across the brain, surprisingly little is known about the neural circuit mechanisms responsible for their implementation. Here we describe a thalamocortical disinhibitory circuit that is required for generating sensory prediction-error signals in mouse primary visual cortex (V1). We show that violating animals' predictions by an unexpected visual stimulus preferentially boosts responses of the layer 2/3 V1 neurons that are most selective for that stimulus. Prediction errors specifically amplify the unexpected visual input, rather than representing non-specific surprise or difference signals about how the visual input deviates from the animal's predictions. This selective amplification is implemented by a cooperative mechanism requiring thalamic input from the pulvinar and cortical vasoactive-intestinal-peptide-expressing (VIP) inhibitory interneurons. In response to prediction errors, VIP neurons inhibit a specific subpopulation of somatostatin-expressing inhibitory interneurons that gate excitatory pulvinar input to V1, resulting in specific pulvinar-driven response amplification of the most stimulus-selective neurons in V1. Therefore, the brain prioritizes unpredicted sensory information by selectively increasing the salience of unpredicted sensory features through the synergistic interaction of thalamic input and neocortical disinhibitory circuits.


Assuntos
Interneurônios , Córtex Visual Primário , Tálamo , Peptídeo Intestinal Vasoativo , Animais , Camundongos , Masculino , Peptídeo Intestinal Vasoativo/metabolismo , Interneurônios/fisiologia , Feminino , Tálamo/fisiologia , Tálamo/citologia , Córtex Visual Primário/fisiologia , Córtex Visual Primário/citologia , Pulvinar/fisiologia , Pulvinar/citologia , Modelos Neurológicos , Estimulação Luminosa , Inibição Neural/fisiologia , Somatostatina/metabolismo , Camundongos Endogâmicos C57BL , Córtex Visual/fisiologia , Córtex Visual/citologia , Vias Visuais/fisiologia
2.
Nature ; 598(7879): 167-173, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616065

RESUMO

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Epigenoma , Epigenômica , Vias Neurais , Neurônios/classificação , Neurônios/metabolismo , Animais , Mapeamento Encefálico , Feminino , Masculino , Camundongos , Neurônios/citologia
3.
Proc Natl Acad Sci U S A ; 117(23): 13066-13077, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461374

RESUMO

Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.


Assuntos
Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Córtex Visual/fisiologia , Animais , Estimulação Elétrica , Eletrodos Implantados , Feminino , Masculino , Camundongos , Microeletrodos , Optogenética , Técnicas Estereotáxicas , Vias Visuais
4.
Curr Biol ; 31(23): 5121-5137.e7, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34614389

RESUMO

Higher-order (HO) thalamic nuclei interact extensively and reciprocally with the cerebral cortex. These corticothalamic (CT) interactions are thought to be important for sensation and perception, attention, and many other important brain functions. CT projections to HO thalamic nuclei, such as the visual pulvinar, originate from two different excitatory populations in cortical layers 5 and 6, whereas first-order nuclei (such as the dorsolateral geniculate nucleus; dLGN) only receive layer 6 CT input. It has been proposed that these layer 5 and layer 6 CT pathways have different functional influences on the HO thalamus, but this has never been directly tested. By optogenetically inactivating different CT populations in the primary visual cortex (V1) and recording single-unit activity from V1, dLGN, and pulvinar of awake mice, we demonstrate that layer 5, but not layer 6, CT projections drive visual responses in the pulvinar, even while both pathways provide retinotopic, baseline excitation to their thalamic targets. Inactivating the superior colliculus also suppressed visual responses in the same subregion of the pulvinar, demonstrating that cortical layer 5 and subcortical inputs both contribute to HO visual thalamic activity-even at the level of putative single neurons. Altogether, these results indicate a functional division of "driver" and "modulator" CT pathways from V1 to the visual thalamus in vivo.


Assuntos
Pulvinar , Córtex Visual , Animais , Corpos Geniculados/fisiologia , Camundongos , Pulvinar/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa