Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33651964

RESUMO

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Assuntos
Inflamação , Animais , Homeostase , Humanos
2.
Immunity ; 57(6): 1345-1359.e5, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38692280

RESUMO

Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.


Assuntos
Adipócitos , Diferenciação Celular , Homeostase , Resistência à Insulina , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , Camundongos , Adipócitos/metabolismo , Diferenciação Celular/imunologia , Oncostatina M/metabolismo , Transdução de Sinais , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/imunologia , Células Estromais/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Cocultura , Adipogenia , Células Cultivadas , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia
3.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398113

RESUMO

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Transgênicos
4.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288724

RESUMO

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Citotóxicos , Células Dendríticas
5.
Cell ; 164(3): 365-77, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26806130

RESUMO

Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αß, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.


Assuntos
Linfócitos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Monitorização Imunológica , Subpopulações de Linfócitos T/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Granzimas/metabolismo , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
6.
Trends Immunol ; 44(12): 986-998, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37940394

RESUMO

Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.


Assuntos
Inflamação , Macrófagos , Humanos , Homeostase , Fenótipo
7.
Proc Natl Acad Sci U S A ; 119(32): e2205360119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930670

RESUMO

Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-ß target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of Csf1, the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.


Assuntos
Proliferação de Células , Fibroblastos , Macrófagos , Animais , Contagem de Células , Fibroblastos/fisiologia , Via de Sinalização Hippo , Macrófagos/citologia , Macrófagos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP/metabolismo
8.
Immunol Rev ; 302(1): 86-103, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101202

RESUMO

Fibroblasts and macrophages are universal cell types across all mammalian tissues. These cells differ in many ways including their cellular origins; dynamics of renewal, recruitment, and motility within tissues; roles in tissue structure and secretion of signaling molecules; and contributions to the activation and progression of immune responses. However, many of the features that make these two cell types unique are not opposing, but instead complementary. This review will present cell-cell communication in this context and discuss how complementarity makes fibroblasts and macrophages highly compatible partners in the maintenance of tissue homeostasis.


Assuntos
Fibroblastos , Macrófagos , Animais , Comunicação Celular , Homeostase , Imunidade
9.
Allergy ; 79(7): 1938-1951, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38419554

RESUMO

BACKGROUND: Several hypotheses link reduced microbial exposure to increased prevalence of allergies. Here we capitalize on the opportunity to study a cohort of infants (CORAL), raised during COVID-19 associated social distancing measures, to identify the environmental exposures and dietary factors that contribute to early life microbiota development and to examine their associations with allergic outcomes. METHODS: Fecal samples were sequenced from infants at 6 (n = 351) and repeated at 12 (n = 343) months, using 16S sequencing. Published 16S data from pre-pandemic cohorts were included for microbiota comparisons. Online questionnaires collected epidemiological information on home environment, healthcare utilization, infant health, allergic diseases, and diet. Skin prick testing (SPT) was performed at 12 (n = 343) and 24 (n = 320) months of age, accompanied by atopic dermatitis and food allergy assessments. RESULTS: The relative abundance of bifidobacteria was higher, while environmentally transmitted bacteria such as Clostridia was lower in CORAL infants compared to previous cohorts. The abundance of multiple Clostridia taxa correlated with a microbial exposure index. Plant based foods during weaning positively impacted microbiota development. Bifidobacteria levels at 6 months of age, and relative abundance of butyrate producers at 12 months of age, were negatively associated with AD and SPT positivity. The prevalence of allergen sensitization, food allergy, and AD did not increase over pre-pandemic levels. CONCLUSIONS: Environmental exposures and dietary components significantly impact microbiota community assembly. Our results also suggest that vertically transmitted bacteria and appropriate dietary supports may be more important than exposure to environmental microbes alone for protection against allergic diseases in infancy.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Hipersensibilidade , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Lactente , Feminino , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Masculino , Fezes/microbiologia , Distanciamento Físico , Pandemias , Exposição Ambiental/efeitos adversos , Pré-Escolar , Estudos de Coortes
10.
Pediatr Allergy Immunol ; 34(9): e14013, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747751

RESUMO

INTRODUCTION: The CORAL study is a cohort of infants born during the first weeks of the first SARS-CoV-2 (COVID-19) lockdown. This cohort has had lower antibiotic exposure, higher breastfeeding rates and lower infection rates, especially in the first year of life. We hypothesized that the altered early-life environment of infants born during lockdown would change the incidence of allergic conditions. METHODS: This longitudinal, observational study followed 365 infants born between March and May 2020 from enrolment to the age of 2 years. Infants attended three research appointments at 6-, 12-, and 24-months and completed detailed questionnaires. At research appointments, children had skin prick testing, and atopic dermatitis (AD) assessment. Statistical analysis focused on changes within the group at different time points, the influence of specific environmental factors on allergic risk and compared the incidence of atopic conditions with a pre-pandemic Irish infant cohort, BASELINE. RESULTS: AD was more common in CORAL group at both 12 (26.5% vs. 15.5%; p < .001) and 24 months (21.3% vs. 15.9%; p = .02) compared with pre-pandemic BASELINE cohort. Within the CORAL group, those with AD at both 12- and 24-month appointments had a more severe AD phenotype associated with a higher risk of allergic sensitization. There was less milk (0% vs. 1%; p = .09), peanut (0.6% vs. 1.8%; p = .3), and egg allergy (0% vs. 2.9%; p < .001) in the CORAL group at 24 months compared with the BASELINE cohort. Aeroallergen sensitization increased between 12 and 24 months in the CORAL cohort (1.5% vs. 8.9%; p < .001), as did parent-reported wheezing episodes (9% vs. 24%; p < .001). CONCLUSIONS: Despite higher AD incidence in the CORAL cohort, the incidence of food sensitization and allergy are lower than expected pre-pandemic rates possibly reflecting the early introduction and maintenance of dietary allergens enhanced by changes in infant infections, antibiotic use, and breastfeeding in the first 2 years of life in the group. These beneficial effects of the lockdown could be outweighing the expected risk of less early-life microbial encounters outlined by the hygiene hypothesis.


Assuntos
Antozoários , COVID-19 , Dermatite Atópica , Hipersensibilidade a Ovo , Criança , Lactente , Feminino , Animais , Humanos , Pré-Escolar , COVID-19/epidemiologia , SARS-CoV-2 , Controle de Doenças Transmissíveis , Dermatite Atópica/epidemiologia , Antibacterianos
11.
Lab Invest ; 102(8): 846-858, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35288653

RESUMO

Myeloid cell mediated mechanisms regulate synovial joint inflammation. IL-34, a macrophage (Mø) growth and differentiation molecule, is markedly expressed in neutrophil and Mø-rich arthritic synovium. IL-34 engages a newly identified independent receptor, protein-tyrosine phosphatase, receptor-type, zeta (PTPRZ), that we find is expressed by Mø. As IL-34 is prominent in rheumatoid arthritis, we probed for the IL-34 and PTPRZ-dependent myeloid cell mediated mechanisms central to arthritis using genetic deficient mice in K/BxN serum-transfer arthritis. Unanticipatedly, we now report that IL-34 and PTPRZ limited arthritis as intra-synovial pathology and bone erosion were more severe in IL-34 and PTPRZ KO mice during induced arthritis. We found that IL-34 and PTPRZ: (i) were elevated, bind, and induce downstream signaling within the synovium in arthritic mice and (ii) were upregulated in the serum and track with disease activity in rheumatoid arthritis patients. Mechanistically, IL-34 and PTPRZ skewed Mø toward a reparative phenotype, and enhanced Mø clearance of apoptotic neutrophils, thereby decreasing neutrophil recruitment and intra-synovial neutrophil extracellular traps. With fewer neutrophils and neutrophil extracellular traps in the synovium, destructive inflammation was restricted, and joint pathology and bone erosion diminished. These novel findings suggest that IL-34 and PTPRZ-dependent mechanisms in the inflamed synovium limit, rather than promote, inflammatory arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Interleucinas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Proteínas de Transporte , Inflamação , Interleucinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Membrana Sinovial/metabolismo
12.
Pediatr Allergy Immunol ; 32(8): 1756-1763, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34152649

RESUMO

BACKGROUND: Internationally, the COVID-19 pandemic severely curtailed access to hospital facilities for those awaiting elective/semi-elective procedures. For allergic children in Ireland, already waiting up to 4 years for an elective oral food challenge (OFC), the restrictions signified indefinite delay. At the time of the initiative, there were approx 900 children on the Children's Health Ireland (CHI) waiting list. In July 2020, a project was facilitated by short-term (6 weeks) access to an empty COVID stepdown facility built, in a hotel conference centre, commandeered by the Health Service Executive (HSE), Ireland. The aim of this study was to achieve the rapid roll-out of an offsite OFC service, delivering high throughput of long waiting patients, while aligning with existing hospital policies and quality standards, international allergy guidelines and national social distancing standards. METHODS: The working group engaged key stakeholders to rapidly develop an offsite OFC facility. Consultant paediatric allergists, consultant paediatricians, trainees and allergy clinical nurse specialists were seconded from other duties. The facility was already equipped with hospital beds, bedside monitors (BP, pulse and oxygen saturation) and bedside oxygen. All medication and supplies had to be brought from the base hospital. Daily onsite consultant anaesthetic cover was resourced and a resuscitation room equipped. Standardized food challenge protocols were created. Access to the onsite hotel chef facilitated food preparation. A risk register was established. RESULTS: After 6 weeks of planning, the remote centre became operational on 7/9/2020, with the capacity of 27 OFC/day. 474 challenges were commenced: 465 (98%) were completed and 9 (2%) were inconclusive. 135 (29%) OFCs were positive, with 25 (5%) causing anaphylaxis. No child required advanced airway intervention. 8 children were transferred to the base hospital. The CHI allergy waiting list was reduced by almost 60% in only 24 days. CONCLUSIONS: Oral food challenges remain a vital tool in the care of allergic children, with their cost saving and quality-of-life benefits negatively affected by a delay in their delivery. This project has shown it is possible to have huge impacts on a waiting list efficiently, effectively and safely with good planning and staff buy-in-even in a pandemic. Adoption of new, flexible and efficient models of service delivery will be important for healthcare delivery in the post-COVID-19 era.


Assuntos
COVID-19 , Pandemias , Alérgenos , Alergistas , Criança , Humanos , SARS-CoV-2
13.
Proc Natl Acad Sci U S A ; 115(8): E1926-E1935, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29429964

RESUMO

Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.


Assuntos
Endocitose , Fenômenos Fisiológicos Celulares , Células/química , Homeostase , Modelos Biológicos , Modelos Teóricos
14.
Immunity ; 35(1): 123-34, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21757379

RESUMO

Tolerance induction in T cells takes place in most tumors and is thought to account for tumor evasion from immune eradication. Production of the cytokine TGF-ß is implicated in immunosuppression, but the cellular mechanism by which TGF-ß induces T cell dysfunction remains unclear. With a transgenic model of prostate cancer, we showed that tumor development was not suppressed by the adaptive immune system, which was associated with heightened TGF-ß signaling in T cells from the tumor-draining lymph nodes. Blockade of TGF-ß signaling in T cells enhanced tumor antigen-specific T cell responses and inhibited tumor development. Surprisingly, T cell- but not Treg cell-specific ablation of TGF-ß1 was sufficient to augment T cell cytotoxic activity and blocked tumor growth and metastases. These findings reveal that T cell production of TGF-ß1 is an essential requirement for tumors to evade immunosurveillance independent of TGF-ß produced by tumors.


Assuntos
Adenocarcinoma/imunologia , Neoplasias da Próstata/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma/patologia , Animais , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/imunologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Vigilância Imunológica , Depleção Linfocítica , Masculino , Camundongos , Camundongos Transgênicos , Oncogenes/fisiologia , Neoplasias da Próstata/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Evasão Tumoral
18.
iScience ; 27(7): 110169, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38993668

RESUMO

Macrophages are critical for maintenance and repair of mucosal tissues. While functionally distinct subtypes of macrophage are known to have important roles in injury response and repair in the lungs, little is known about macrophages in the proximal conducting airways. Single-cell RNA sequencing and flow cytometry demonstrated murine tracheal macrophages are largely monocyte-derived and are phenotypically distinct from lung macrophages at homeostasis. Following sterile airway injury, monocyte-derived macrophages are recruited to the trachea and activate a pro-regenerative phenotype associated with wound healing. Animals lacking the chemokine receptor CCR2 have reduced numbers of circulating monocytes and tracheal macrophages, deficient pro-regenerative macrophage activation and defective epithelial repair. Together, these studies indicate that recruitment and activation of monocyte-derived tracheal macrophages is CCR2-dependent and is required for normal airway epithelial regeneration.

19.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617297

RESUMO

Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.

20.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229208

RESUMO

Influenza viruses are a major global cause of morbidity and mortality. Vagal TRPV1 + nociceptive sensory neurons, which innervate the airways, are known to mediate defenses against harmful agents. However, their function in lung antiviral defenses remains unclear. Our study reveals that both systemic and vagal-specific ablation of TRPV1 + nociceptors reduced survival in mice infected with influenza A virus (IAV), despite no significant changes in viral burden or weight loss. Mice lacking nociceptors showed exacerbated lung pathology and elevated levels of pro-inflammatory cytokines. The increased mortality was not attributable to the loss of the TRPV1 ion channel or neuropeptides CGRP or substance P. Immune profiling through flow cytometry and single-cell RNA sequencing identified significant nociceptor deficiency-mediated changes in the lung immune landscape, including an expansion of neutrophils and monocyte-derived macrophages. Transcriptional analysis revealed impaired interferon signaling in these myeloid cells and an imbalance in distinct neutrophil sub-populations in the absence of nociceptors. Furthermore, anti-GR1-mediated depletion of myeloid cells during IAV infection significantly improved survival, underscoring a role of nociceptors in preventing pathogenic myeloid cell states that contribute to IAV-induced mortality. One Sentence Summary : TRPV1 + neurons facilitate host survival from influenza A virus infection by controlling myeloid cell responses and immunopathology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa