RESUMO
Bisphenol A (BPA) is a known endocrine disruptor found in many consumer products that humans come into contact with on a daily basis. Due to increasing concerns about the safety of BPA and the introduction of new legislation restricting its use, industry has responded by adopting new, less studied BPA analogues that have similar polymer-forming properties. Some BPA analogues have already been shown to exhibit effects similar to BPA, for example, contributing to endocrine disruption through agonistic or antagonistic behaviour at various nuclear receptors such as estrogen (ER), androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR), and pregnane X receptor (PXR). Since the European Food Safety Authority (EFSA) issued a draft re-evaluation of BPA and drastically reduced the temporary tolerable daily intake (t-TDI) of BPA from 4 mg/kg body weight/day to 0.2 ng/kg body weight/day due to increasing concern about the toxic properties of BPA, including its potential to disrupt immune system processes, we conducted a comprehensive review of the immunomodulatory activity of environmentally abundant BPA analogues. The results of the review suggest that BPA analogues may affect both the innate and acquired immune systems and can contribute to various immune-mediated conditions such as hypersensitivity reactions, allergies, and disruption of the human microbiome.
Assuntos
Disruptores Endócrinos , Receptores Citoplasmáticos e Nucleares , Humanos , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Peso Corporal , Disruptores Endócrinos/toxicidadeRESUMO
RT-qPCR is the gold standard and the most commonly used method for measuring gene expression. Selection of appropriate reference gene(s) for normalization is a crucial part of RT-qPCR experimental design, which allows accurate quantification and reliability of the results. Because there is no universal reference gene and even commonly used housekeeping genes' expression can vary under certain conditions, careful selection of an appropriate internal control must be performed for each cell type or tissue and experimental design. The aim of this study was to identify the most stable reference genes during osteogenic differentiation of the human osteosarcoma cell lines MG-63, HOS, and SaOS-2 using the geNorm, NormFinder, and BestKeeper statistical algorithms. Our results show that TBP, PPIA, YWHAZ, and EF1A1 are the most stably expressed genes, while ACTB, and 18S rRNA expressions are most variable. These data provide a basis for future RT-qPCR normalizations when studying gene expression during osteogenic differentiation, for example, in studies of osteoporosis and other bone diseases.
Assuntos
Genes Essenciais , Osteogênese , Proteínas 14-3-3/genética , Perfilação da Expressão Gênica/métodos , Humanos , Osteogênese/genética , Peptidilprolil Isomerase , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Proteína de Ligação a TATA-BoxRESUMO
The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase - a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.
Assuntos
Antibacterianos/farmacologia , Ácidos Carboxílicos/farmacologia , Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salmonella typhimurium/enzimologia , Relação Estrutura-AtividadeRESUMO
The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein-protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.
Assuntos
Bactérias/enzimologia , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cisteína Sintase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Mapas de Interação de Proteínas , Espalhamento a Baixo Ângulo , Serina O-Acetiltransferase/genética , Difração de Raios XRESUMO
Saturation transfer difference (STD) is an NMR technique conventionally applied in drug discovery to identify ligand moieties relevant for binding to protein cavities. This is important to direct medicinal chemistry efforts in small-molecule optimization processes. However, STD does not provide any structural details about the ligand-target complex under investigation. Herein, we report the application of a new integrated approach, which combines enhanced sampling methods with STD experiments, for the characterization of ligand-target complexes that are instrumental for drug design purposes. As an example, we have studied the interaction between StOASS-A, a potential antibacterial target, and an inhibitor previously reported. This approach allowed us to consider the ligand-target complex from a dynamic point of view, revealing the presence of an accessory subpocket which can be exploited to design novel StOASS-A inhibitors. As a proof of concept, a small library of derivatives was designed and evaluated in vitro, displaying the expected activity.
Assuntos
Cisteína Sintase/antagonistas & inibidores , Cisteína Sintase/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Salmonella typhimurium/enzimologia , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cisteína Sintase/química , Desenho de Fármacos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Salmonella typhimurium/efeitos dos fármacos , TermodinâmicaRESUMO
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.
Assuntos
Alanina/análogos & derivados , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Alanina/síntese química , Alanina/química , Alanina/farmacologia , Cisteína Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Salmonella enterica/enzimologia , Relação Estrutura-AtividadeRESUMO
Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out.
Assuntos
Cisteína Sintase/antagonistas & inibidores , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/genética , Sítios de Ligação , Bioensaio , Simulação por Computador , DNA Recombinante/química , DNA Recombinante/genética , Ligantes , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of "moonlighting" activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5'-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.
Assuntos
Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fluorometria , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
The strong appeal to reduce animal testing calls for the development and validation of in vitro, in chemico and in silico models that would replace the need for in vivo testing and ex vivo materials. A category that requires such new approach methods is the assessment of immunosuppression that can be induced by chemicals including environmental pollutants. To assess the immunosuppressive action on monocytes and lymphocytes, we mimicked the whole-blood cytokine-release assay by preparing an in vitro coculture of THP-1 and Jurkat cell lines. We optimised its activation and investigated the effects of known immunosuppressive drugs with different mechanisms of action on the release of proinflammatory cytokines. Decreased secretion of IL-8 was achieved by several immunosuppressive mechanisms and was therefore selected as an appropriate marker of immunosuppression. A set of environmentally occurring bisphenols, BPA, BPAP, BPP, BPZ, BPE, TCBPA and BPS-MAE, were then applied to the model and BPP and BPZ were found to act as potent immunosuppressants at micromolar concentrations.
RESUMO
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Humanos , Disruptores Endócrinos/toxicidade , Animais , Poluentes Ambientais/toxicidadeRESUMO
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).
RESUMO
Antibacterial adjuvants are of great significance, since they allow one to downscale the therapeutic dose of conventional antibiotics and reduce the insurgence of antibacterial resistance. Herein, we report that O-acetylserine sulfhydrylase (OASS) inhibitors could be used as colistin adjuvants to treat infections caused by critical pathogens spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae. Starting from a hit compound endowed with a nanomolar dissociation constant, we have rationally designed and synthesized a series of derivatives to be tested against S. Typhimurium OASS isoenzymes, StOASS-A and StOASS-B. All acidic derivatives have shown good activities in the nanomolar range against both OASS isoforms in vitro. Minimal Inhibitory Concentrations (MICs) were then evaluated, as well as compounds' toxicity. The compounds endowed with good activity in vitro and low cytotoxicity have been challenged as a potential colistin adjuvant against pathogenic bacteria in vitro and the fractional inhibitory concentration (FIC) index has been calculated to define additive or synergistic effects. Finally, the target engagement inside the S. Typhimurium cells was confirmed by using a mutant strain in which the OASS enzymes were inactivated. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants.
RESUMO
Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure-activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.
RESUMO
Antibacterial adjuvants are of great significance, since they allow the therapeutic dose of conventional antibiotics to be lowered and reduce the insurgence of antibiotic resistance. Herein, we report that an O-acetylserine sulfhydrylase (OASS) inhibitor can be used as a colistin adjuvant to treat infections caused by Gram-positive and Gram-negative pathogens. A compound that binds OASS with a nM dissociation constant was tested as an adjuvant of colistin against six critical pathogens responsible for infections spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, Klebisiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Staphylococcus pseudintermedius. The compound showed promising synergistic or additive activities against all of them. Knockout experiments confirmed the intracellular target engagement supporting the proposed mechanism of action. Moreover, compound toxicity was evaluated by means of its hemolytic activity against sheep defibrinated blood cells, showing a good safety profile. The 3D structure of the compound in complex with OASS was determined at 1.2 Å resolution by macromolecular crystallography, providing for the first time structural insights about the nature of the interaction between the enzyme and this class of competitive inhibitors. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants and the structural basis for further structure-activity relationship studies.
Assuntos
Cisteína Sintase , Staphylococcus aureus Resistente à Meticilina , Animais , Ácidos Carboxílicos , Colistina/farmacologia , Ciclopropanos , Ovinos , StaphylococcusRESUMO
In Ï-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of l-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91â¯243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50 <100 µM were identified via an indirect assay using Ellman's reagent and then tested on a Gram-negative model organism, with one of them being able to interfere with bacterial growth via SAT inhibition.
RESUMO
In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.