RESUMO
During the Carnian, oligotrophic shallow-water regions of the western Tethys were occupied by small, coral-rich patch reefs. Scleractinian corals, which already contributed to the formation of the reef structure, owed their position most probably to the symbiosis with dinoflagellate algae (zooxanthellae). Using microstructural (regularity of growth increments) and geochemical (oxygen and carbon stable isotopes) criteria of zooxanthellae symbiosis, we investigated whether this partnership was widespread among Carnian scleractinians from the Italian Dolomites (locality Alpe di Specie). Although corals from this locality are renowned from excellent mineralogical preservation (aragonite), their skeletons were rigorously tested against traces of diagenesis Irrespective of their growth forms, well preserved skeletons of corals from the Dolomites, most frequently revealed regular growth bands (low values of coefficient of variation) typical of modern zooxanthellate corals. Paradoxically, some Carnian taxa (Thamnasteriomorpha frechi and Thamnasteriomorphasp.)with highly integrated thamnasterioid colonies which today are formed exclusively by zooxanthellate corals, showed irregular fine-scale growth bands (coefficient of variation of 40% and 41% respectively) that could suggest their asymbiotic status. However, similar irregular skeletal banding is known also in some modern agariciids (Leptoseris fragilis) which are symbiotic with zooxanthellae. This may point to a similar ecological adaptation of Triassic taxa with thamnasterioid colonies. Contrary to occasionally ambiguous interpretation of growth banding, all examined Carnian corals exhibited lack of distinct correlation between carbon (δ 13C range between 0.81 and 5.81) and oxygen (δ 18O values range between -4.21 and -1.06) isotope composition of the skeleton which is consistent with similar pattern in modern zooxanthellates. It is therefore highly likely, that Carnian scleractinian corals exhibited analogous ecological adaptations as modern symbiotic corals and that coral-algal symbiosis that spread across various clades of Scleractinia preceded the reef bloom at the end of the Triassic.
RESUMO
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.
Assuntos
Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Fósseis , Simbiose , Animais , Evolução Biológica , Ecossistema , Geografia , Geologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Especificidade da EspécieRESUMO
Roughly 240 million years ago (Ma), scleractinian corals rapidly expanded and diversified across shallow marine environments. The main driver behind this evolution is uncertain, but the ecological success of modern reef-building corals is attributed to their nutritional symbiosis with photosynthesizing dinoflagellate algae. We show that a suite of exceptionally preserved Late Triassic (ca. 212 Ma) coral skeletons from Antalya (Turkey) have microstructures, carbonate 13C/12C and 18O/16O, and intracrystalline skeletal organic matter 15N/14N all indicating symbiosis. This includes species with growth forms conventionally considered asymbiotic. The nitrogen isotopes further suggest that their Tethys Sea habitat was a nutrient-poor, low-productivity marine environment in which photosymbiosis would be highly advantageous. Thus, coral-dinoflagellate symbiosis was likely a key driver in the evolution and expansion of shallow-water scleractinians.