Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Physiol ; 601(4): 859-878, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566502

RESUMO

Within the transient receptor potential (TRP) superfamily of ion channels, TRPV5 is a highly Ca2+ -selective channel important for active reabsorption of Ca2+ in the kidney. Its channel activity is controlled by a negative feedback mechanism involving calmodulin (CaM) binding. Combining advanced microscopy techniques and biochemical assays, this study characterized the dynamic lobe-specific CaM regulation. We demonstrate for the first time that functional (full-length) TRPV5 interacts with CaM in the absence of Ca2+ , and this interaction is intensified at increasing Ca2+ concentrations sensed by the CaM C-lobe that achieves channel pore blocking. Channel inactivation occurs without requiring CaM N-lobe calcification. Moreover, we show a Ca2+ -dependent binding stoichiometry at the single channel level. In conclusion, our study proposes a new model for CaM-dependent regulation - calmodulation - of this uniquely Ca2+ -selective TRP channel TRPV5 that involves apoCaM interaction and lobe-specific actions, which may be of significant physiological relevance given its role as gatekeeper of Ca2+ transport in the kidney. KEY POINTS: The renal Ca2+ channel TRPV5 is an important player in maintenance of the body's Ca2+ homeostasis. Activity of TRPV5 is controlled by a negative feedback loop that involves calmodulin (CaM), a protein with two Ca2+ -binding lobes. We investigated the dynamics of the interaction between TRPV5 and CaM with advanced fluorescence microscopy techniques. Our data support a new model for CaM-dependent regulation of TRPV5 channel activity with CaM lobe-specific actions and demonstrates Ca2+ -dependent binding stoichiometries. This study improves our understanding of the mechanism underlying fast channel inactivation, which is physiologically relevant given the gatekeeper function of TRPV5 in Ca2+ reabsorption in the kidney.


Assuntos
Calmodulina , Canais de Cátion TRPV , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Ligação Proteica , Canais de Cátion TRPV/metabolismo
2.
Biochim Biophys Acta ; 1852(3): 529-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536029

RESUMO

Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibroblastos/enzimologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Animais , Cálcio/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular/genética , Cloretos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Mol Life Sci ; 70(12): 2175-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23307072

RESUMO

Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease. Extracellular supplementation of NAD(+) or re-expression of NAMPT abolished the effects. The effects of NAD(H) decrease on cell motility appeared parallel coupled with diminished pyruvate-lactate conversion by lactate dehydrogenase (LDH) and with changes in intracellular and extracellular pH. The addition of lactic acid rescued and knockdown of LDH-A replicated the effects of [NAD(H)] on motility. Combined, our observations demonstrate that [NAD(H)] is an important metabolic component of cancer cell motility. Nutrient or drug-mediated modulation of NAD(H) levels may therefore represent a new option for blocking the invasive behavior of tumors.


Assuntos
Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/fisiopatologia , NAD/metabolismo , Invasividade Neoplásica/fisiopatologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Northern Blotting , Western Blotting , Glioma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/farmacologia , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Imagem com Lapso de Tempo , Células Tumorais Cultivadas
4.
Biochim Biophys Acta ; 1807(12): 1624-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21978538

RESUMO

Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/fisiologia , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Recuperação de Fluorescência Após Fotodegradação , Humanos , Mitocôndrias/genética , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Biochim Biophys Acta ; 1813(5): 867-77, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21295081

RESUMO

DMPK, the product of the mutated gene in myotonic dystrophy type 1, belongs to the subfamily of Rho-associated serine-threonine protein kinases, whose members play a role in actin-based cell morphodynamics. Not much is known about the physiological role of differentially localized individual DMPK splice isoforms. We report here that prominent stellar-shaped stress fibers are formed during early and late steps of differentiation in DMPK-deficient myoblast-myotubes upon complementation with the short cytosolic DMPK E isoform. Expression of DMPK E led to an increased phosphorylation status of MLC2. We found no such effects with vectors that encode a mutant DMPK E which was rendered enzymatically inactive or any of the long C-terminally anchored DMPK isoforms. Presence of stellar structures appears associated with changes in cell shape and motility and a delay in myogenesis. Our data strongly suggest that cytosolic DMPK participates in remodeling of the actomyosin cytoskeleton in developing skeletal muscle cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Actomiosina/metabolismo , Diferenciação Celular , Citosol/enzimologia , Mioblastos/citologia , Mioblastos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Movimento Celular , Polaridade Celular , Proliferação de Células , Forma Celular , Isoenzimas/metabolismo , Camundongos , Desenvolvimento Muscular , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase , Fosforilação , Estrutura Quaternária de Proteína , Transporte Proteico , Fibras de Estresse/metabolismo , Fibras de Estresse/ultraestrutura , Frações Subcelulares/metabolismo
6.
FEBS Lett ; 596(19): 2486-2496, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35674424

RESUMO

Correlative light and electron microscopy (CLEM) is a powerful imaging approach that allows the direct correlation of information obtained on a light and an electron microscope. There is a growing interest in the application of CLEM in biology, mainly attributable to technical advances in field of fluorescence microscopy in the past two decades. In this review, we summarize the important developments in CLEM for biological applications, focusing on the combination of fluorescence microscopy and electron microscopy. We first provide a brief overview of the early days of fluorescence CLEM usage starting with the initial rise in the late 1970s and the subsequent optimization of CLEM workflows during the following two decades. Next, we describe how the engineering of fluorescent proteins and the development of super-resolution fluorescence microscopy have significantly renewed the interest in CLEM resulting in the present application of fluorescence CLEM in many different areas of cellular and molecular biology. Lastly, we present the promises and challenges for the future of fluorescence CLEM discussing novel workflows, probe development and quantification possibilities.


Assuntos
Biologia , Elétrons , Microscopia Eletrônica , Microscopia de Fluorescência/métodos
7.
J Cell Biol ; 173(5): 767-80, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16754960

RESUMO

Dynamic turnover of integrin cell adhesion molecules to and from the cell surface is central to cell migration. We report for the first time an association between integrins and Rab proteins, which are small GTPases involved in the traffic of endocytotic vesicles. Rab21 (and Rab5) associate with the cytoplasmic domains of alpha-integrin chains, and their expression influences the endo/exocytic traffic of integrins. This function of Rab21 is dependent on its GTP/GDP cycle and proper membrane targeting. Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas its overexpression stimulates cell migration and cancer cell adhesion to collagen and human bone. Finally, overexpression of Rab21 fails to induce cell adhesion via an integrin point mutant deficient in Rab21 association. These data provide mechanistic insight into how integrins are targeted to intracellular compartments and how their traffic regulates cell adhesion.


Assuntos
Endossomos/metabolismo , Integrina beta1/metabolismo , Proteínas rab de Ligação ao GTP/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Endossomos/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Integrina beta1/efeitos dos fármacos , Mutação , Transporte Proteico/fisiologia , Fatores de Tempo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
PLoS Biol ; 6(3): e51, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18336068

RESUMO

Phagocytosis requires locally coordinated cytoskeletal rearrangements driven by actin polymerization and myosin motor activity. How this actomyosin dynamics is dependent upon systems that provide access to ATP at phagosome microdomains has not been determined. We analyzed the role of brain-type creatine kinase (CK-B), an enzyme involved in high-energy phosphoryl transfer. We demonstrate that endogenous CK-B in macrophages is mobilized from the cytosolic pool and coaccumulates with F-actin at nascent phagosomes. Live cell imaging with XFP-tagged CK-B and beta-actin revealed the transient and specific nature of this partitioning process. Overexpression of a catalytic dead CK-B or CK-specific cyclocreatine inhibition caused a significant reduction of actin accumulation in the phagocytic cup area, and reduced complement receptor-mediated, but not Fc-gammaR-mediated, ingestion capacity of macrophages. Finally, we found that inhibition of CK-B affected phagocytosis already at the stage of particle adhesion, most likely via effects on actin polymerization behavior. We propose that CK-B activity in macrophages contributes to complement-induced F-actin assembly events in early phagocytosis by providing local ATP supply.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Creatina Quinase Forma BB/metabolismo , Fagocitose , Trifosfato de Adenosina/provisão & distribuição , Animais , Adesão Celular , Proteínas do Sistema Complemento/metabolismo , Creatina Quinase Forma BB/fisiologia , Creatinina/análogos & derivados , Creatinina/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Proteínas Opsonizantes/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Polímeros/metabolismo , Transporte Proteico/fisiologia , Fatores de Tempo , Zimosan/metabolismo
9.
Eur J Immunol ; 39(7): 1923-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19585517

RESUMO

Dendritic cells (DC), professional Ag-presenting cells located in mucosae and lymphoid organs, operate at the interface of innate and adaptive immunity and are likely the first cells to encounter invading HIV-1. Although the C-type lectin DC-Specific ICAM-3-grabbing non-integrin (DC-SIGN) binds to several viruses, including HIV-1, its direct involvement in viral entry remains controversial. Despite its central role in DC function, little is known about the underlying molecular mechanism(s) of DC-SIGN-mediated Ag uptake. Here, we analyzed the early stages of DC-SIGN-mediated endocytosis and demonstrate that both membrane cholesterol and dynamin are required. Confocal microscopy and clathrin RNAi showed that DC-SIGN-mediated internalization occurs via clathrin-coated pits. Electron microscopy of ultrathin sections showed the involvement of DC-SIGN in clathrin-dependent HIV-1 internalization by DC. Currently, DC-specific C-type lectins are considered potential target in anti-tumor clinical trials. Detailed information about how different Ag are internalized via these receptors will facilitate the rational design of targeted therapeutic strategies.


Assuntos
Antígenos/metabolismo , Moléculas de Adesão Celular/metabolismo , Clatrina/metabolismo , HIV-1/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Células CHO , Moléculas de Adesão Celular/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Clatrina/genética , Cricetinae , Cricetulus , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Dinaminas/genética , Dinaminas/metabolismo , Endocitose , Humanos , Lectinas Tipo C/genética , Microscopia Confocal , Microscopia Eletrônica , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/genética , Solubilidade , Transfecção
10.
Mol Cancer ; 8: 54, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19646236

RESUMO

BACKGROUND: The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. RESULTS: Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. CONCLUSION: The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.


Assuntos
Transformação Celular Neoplásica , Fibroblastos/metabolismo , Glicólise , Fosforilação Oxidativa , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/fisiologia , Animais , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Ácido Láctico/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Mitocôndrias/metabolismo , NAD/metabolismo , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Consumo de Oxigênio , Retroviridae/genética , Superóxidos/metabolismo , Proteínas ras/genética , Proteínas ras/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa