Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 410, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843606

RESUMO

BACKGROUND: The number of studies of Copy Number Variation in cattle has increased in recent years. This has been prompted by the increased availability of data on polymorphisms and their relationship with phenotypes. In addition, livestock species are good models for some human phenotypes. In the present study, we described the landscape of CNV driven genetic variation in a large population of 146 individuals representing 13 cattle breeds, using whole genome DNA sequence. RESULTS: A highly significant variation among all individuals and within each breed was observed in the number of duplications (P < 10-15) and in the number of deletions (P < 10-15). We also observed significant differences between breeds for duplication (P = 0.01932) and deletion (P = 0.01006) counts. The same variation CNV length - inter-individual and inter-breed differences were significant for duplications (P < 10-15) and deletions (P < 10-15). Moreover, breed-specific variants were identified, with the largest proportion of breed-specific duplications (9.57%) found for Fleckvieh and breed-specific deletions found for Brown Swiss (5.00%). Such breed-specific CNVs were predominantly located in intragenic regions, however in Simmental, one deletion present in five individuals was found in the coding sequence of a novel gene ENSBTAG00000000688 on chromosome 18. In Brown Swiss, Norwegian Red and Simmental breed-specific deletions were located within KIT and MC1R genes, which are responsible for a coat colour. The functional annotation of coding regions underlying the breed-specific CNVs showed that in Norwegian Red, Guernsey, and Simmental significantly under- and overrepresented GO terms were related to chemical stimulus involved in sensory perception of smell and the KEGG pathways for olfactory transduction. In addition, specifically for the Norwegian Red breed, the dopaminergic synapse KEGG pathway was significantly enriched within deleted parts of the genome. CONCLUSIONS: The CNV landscape in Bos taurus genome revealed by this study was highly complex, with inter-breed differences, but also a significant variation within breeds. The former, may explain some of the phenotypic differences among analysed breeds, and the latter contributes to within-breed variation available for selection.


Assuntos
Bovinos/genética , Variações do Número de Cópias de DNA/genética , Animais , Especificidade da Espécie
2.
J Dairy Sci ; 100(7): 5515-5525, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501396

RESUMO

Thirty-two whole genome DNA sequences of cows were analyzed to evaluate inter-individual variability in the distribution and length of copy number variations (CNV) and to functionally annotate CNV breakpoints. The total number of deletions per individual varied between 9,731 and 15,051, whereas the number of duplications was between 1,694 and 5,187. Most of the deletions (81%) and duplications (86%) were unique to a single cow. No relation between the pattern of variant sharing and a family relationship or disease status was found. The animal-averaged length of deletions was from 5,234 to 9,145 bp and the average length of duplications was between 7,254 and 8,843 bp. Highly significant inter-individual variation in length and number of CNV was detected for both deletions and duplications. The majority of deletion and duplication breakpoints were located in intergenic regions and introns, whereas fewer were identified in noncoding transcripts and splice regions. Only 1.35 and 0.79% of the deletion and duplication breakpoints were observed within coding regions. A gene with the highest number of deletion breakpoints codes for protein kinase cGMP-dependent type I, whereas the T-cell receptor α constant gene had the most duplication breakpoints. The functional annotation of genes with the largest incidence of deletion/duplication breakpoints identified 87/112 Kyoto Encyclopedia of Genes and Genomes pathways, but none of the pathways were significantly enriched or depleted with breakpoints. The analysis of Gene Ontology (GO) terms revealed that a cluster with the highest enrichment score among genes with many deletion breakpoints was represented by GO terms related to ion transport, whereas the GO term cluster mostly enriched among the genes with many duplication breakpoints was related to binding of macromolecules. Furthermore, when considering the number of deletion breakpoints per gene functional category, no significant differences were observed between the "housekeeping" and "strong selection" categories, but genes representing the "low selection pressure" group showed a significantly higher number of breakpoints.


Assuntos
Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Deleção de Genes , Duplicação Gênica , Genoma , Animais , Bovinos , Feminino , Ontologia Genética
3.
Anim Genet ; 46(3): 247-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25752210

RESUMO

There are two categories of immune responses - innate and adaptive immunity - both having polygenic backgrounds and a significant environmental component. In our study, adaptive immunity was represented by the specific antibody response toward keyhole limpet hemocyanin (KLH); innate immunity was represented by natural antibodies toward lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Defining genetic bases of immune responses leads from defining quantitative trait loci (QTL) toward a single mutation responsible for variation in the phenotypic trait. The goal of the reported study was to define candidate genes and mutations for the immune traits of interest in chicken by performing an association study of SNPs located in candidate genes defined in QTL regions. Candidate genes and SNPs in QTL regions were selected in silico. SNP association was based on a custom SNP panel, GoldenGate genotyping assay (Illumina) and two statistical models: random mixed model and CAR score. The most significant SNP for immune response toward KLH was located in the JMJD6 gene located on GGA18. Four SNPs in candidate genes FOXJ1 (GGA18), EPHB1 (GGA9), PTGER4 (GGAZ) and PRKCB (GGA14) showed association with natural antibodies for LPS. A single SNP in ITGB4 (GGA18) was associated with natural antibodies for LTA. All associated SNPs mentioned above showed additive effects.


Assuntos
Formação de Anticorpos , Galinhas/genética , Galinhas/imunologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Imunidade Adaptativa , Animais , Genótipo , Hemocianinas/imunologia , Imunidade Inata , Lipopolissacarídeos/imunologia , Modelos Estatísticos , Mutação , Ácidos Teicoicos/imunologia
4.
Animal ; 13(10): 2156-2163, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30835192

RESUMO

Mastitis is an inflammatory disease of the mammary gland, which has a significant economic impact and is an animal welfare concern. This work examined the association between single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) with the incidence of clinical mastitis (CM). Using information from 16 half-sib pairs of Holstein-Friesian cows (32 animals in total) we searched for genomic regions that differed between a healthy (no incidence of CM) and a mastitis-prone (multiple incidences of CM) half-sib. Three cows with average sequence depth of coverage below 10 were excluded, which left 13 half-sib pairs available for comparisons. In total, 191 CNV regions were identified, which were deleted in a mastitis-prone cow, but present in its healthy half-sib and overlapped in at least nine half-sib pairs. These regions overlapped with exons of 46 genes, among which APP (BTA1), FOXL2 (BTA1), SSFA2 (BTA2), OTUD3 (BTA2), ADORA2A (BTA17), TXNRD2 (BTA17) and NDUFS6 (BTA20) have been reported to influence CM. Moreover, two duplicated CNV regions present in nine healthy individuals and absent in their mastitis-affected half-sibs overlapped with exons of a cholinergic receptor nicotinic α 10 subunit on BTA15 and a novel gene (ENSBTAG00000008519) on BTA27. One CNV region deleted in nine mastitis-affected sibs overlapped with two neighbouring long non-coding RNA sequences located on BTA12. Single nucleotide polymorphisms with differential genotypes between a healthy and a mastitis-affected sib included 17 polymorphisms with alternate alleles in eight affected and healthy half-sib families. Three of these SNPs were located introns of genes: MET (BTA04), RNF122 (BTA27) and WRN (BTA27). In summary, structural polymorphisms in form of CNVs, putatively play a role in susceptibility to CM. Specifically, sequence deletions have a greater effect on reducing resistance against mastitis, than sequence duplications have on increasing resistance against the disease.


Assuntos
Variações do Número de Cópias de DNA , Genoma/genética , Mastite Bovina/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Bovinos , Suscetibilidade a Doenças , Feminino , Patrimônio Genético , Genótipo , Íntrons/genética , Glândulas Mamárias Animais , Deleção de Sequência
5.
J Appl Genet ; 59(2): 225-230, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524049

RESUMO

Horses lose potential opportunities because of health problems. Available breeding strategies are not effective enough, probably also because of the different definition used and its genetic usefulness. The aim of the study was to compare the genetic background estimated by the genome-wide association study (GWAS) for osteochondrosis using two different scaling osteochondrosis (OC)/healthy and osteochondrosis dissecans (OCD)/healthy systems for evaluating the disease status of investigated fetlock joints. Two hundred one Warmblood horses trained for performance tests (87 stallions and 114 mares) were phenotyped and genotyped. Four fetlock x-ray images per horse were collected using the RTG Girth HF 80 and Vet Scan ray 3600. The DNA of each horse was genotyped using the BeadChip 70K. To identify SNPs that significantly affect the probability of osteochondrosis, two different methods were applied: the Cochran-Armitage test based on an additive mode of inheritance and logistic regression. The genetic background for osteochondrosis, expressed in the number of SNPs found with significant associations with osteochondrosis, was higher by evaluation in the scale of OCD/healthy horses (16 SNPs on several chromosomes mainly on the ECA1 and ECA10) than OC/healthy (2 SNPs on the ECA15 and one SNP on the ECA10). Detailed definition of osteochondrosis is needed in breeding and in veterinary practice. The genetic background for osteochondrosis and osteochondrosis dissecans seems not the same. Suggestive SNPs could be the candidate markers for osteochondrosis but should be checked on a larger population before usage.


Assuntos
Doenças dos Cavalos/genética , Cavalos/genética , Osteocondrose/veterinária , Animais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Osteocondrose/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
J Appl Genet ; 57(2): 207-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26294278

RESUMO

The goal of this study was to compare significant SNP selection approaches in the context of complex traits based on SNP estimates obtained by models: a model fitting a single SNP (M1), a model fitting a single SNP and a random polygenic effect (M2), the nonparametric CAR score (M3), a SNP-BLUP model with random effects of all SNPs fitted simultaneously (M4). There were 46,267 SNPs tested in a population of 2601 Holstein Friesian bulls, four traits (milk and fat yields, somatic cell score, non-return rate for heifers) were considered. The numbers of SNPs selected as significant differed among models. M1 selected a very large number of SNPs, except for a NRH in which no SNPs were significant. M2 and M3 both selected similar and low number of SNPs for each trait. M4 selected more SNPs than M2 and M3. Considering linkage disequilibrium between SNPs, for MY M2 and M3 selected SNPs more highly correlated with each other than in the case of M4, while for FY M3 selection contained more correlated SNPs than M2 and M4. In conclusion, if the research interest is to identify SNPs not only with strong, but also with moderate effects on a complex trait a multiple-SNP model is recommended. Such models are capable of accounting for at least a part of linkage disequilibrium between SNPs through the design matrix of SNP effects. Functional annotation of SNPs significant in M4 reveals good correspondence between selected polymorphisms and functional information as well as with QTL mapping results.


Assuntos
Bovinos/genética , Estudos de Associação Genética/veterinária , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Desequilíbrio de Ligação , Masculino , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa