RESUMO
Resistin is an adipokine with metabolic and inflammatory functions. Epidemiological and translational studies report that an increase in plasma levels and tissue expression of resistin increases the aggressiveness of prostate tumor cells. Extracellular vesicles (EVs) are secreted constitutively and induced by cytokines, growth factors, and calcium and are found in multiple biological fluids such as saliva, serum, semen, and urine. In particular, EVs have been shown to promote tumor progression through the induction of proliferation, growth, angiogenesis, resistance to chemotherapy, and metastasis. However, the role of resistin in the migration, invasion, and secretion of EVs in invasive prostate tumor cells remains to be studied. In the present study, we demonstrate that resistin induces increased migration and invasion in PC3 cells. In addition, these phenomena are accompanied by increased p-FAK levels and increased secretion of MMP-2 and MMP-9 in resistin-treated PC3 cells. Interestingly, EVs isolated from supernatants of PC3 cells treated with resistin induce an increase in migration and invasion accompanied by high MMP-2 and MMP-9 secretion in an autocrine stimulation model. In summary, our data for the first time demonstrate that resistin induces migration and invasion, partly through the secretion of EVs with pro-invasive characteristics in PC3 cells.
RESUMO
Cellular labeling through the use of dyes is of great interest to the biomedical sciences for the characterization of the location and distribution of biomolecules and also for the tracking of the course of biological processes in both health and illness. This paper reports the synthesis, characterization, and subsequent evaluation as metal sensors and cell staining probes of four aza-BODIPY compounds [herein referred to as 7(a-d)]. Compounds 7(b-d) were found to display an outstanding selectivity for Cu(II) because their emission band at 720 nm was progressively quenched by this metal, presenting fluorescence quenching between 75 and 95%. On the other hand, cell imaging studies with pancreatic ß-cells proved that aza-BODIPYs 7a and 7b showed selectivity for the cytoplasm, while 7c and 7d were selective for the cell membrane. Moreover, aza-BODIPY 7b allowed to characterize in a clear way a lipotoxic condition mediated by saturated fatty acids, a critical phenomenon on ß-cell damage associated with diabetes mellitus type II. Taken together, the presented results highlight the obtained aza-BODIPY compounds as selective sensing/staining probes with the potential to be used in the biomedical field.
RESUMO
Metabolic overload by saturated fatty acids (SFA), which comprises ß-cell function, and impaired glucose-stimulated insulin secretion are frequently observed in patients suffering from obesity and type 2 diabetes mellitus. The increase of intracellular Ca2+ triggers insulin granule release, therefore several mechanisms regulate Ca2+ efflux within the ß-cells, among others, the plasma membrane Ca2+-ATPase (PMCA). In this work, we describe that lipotoxicity mediated mainly by the saturated palmitic acid (PA) (16C) is associated with loss of protein homeostasis (proteostasis) and potentially cell viability, a phenomenon that was induced to a lesser extent by stearic (18C), myristic (14C) and lauric (12C) acids. PA was localized on endoplasmic reticulum, activating arms of the unfolded protein response (UPR), as also promoted by lipopolysaccharides (LPS)-endotoxins. In particular, our findings demonstrate an alteration in PMCA1/4 expression caused by PA and LPS which trigger the UPR, affecting not only insulin release and contributing to ß-cell mass reduction, but also increasing reactive nitrogen species. Nonetheless, stearic acid (SA) did not show these effects. Remarkably, the proteolytic degradation of PMCA1/4 prompted by PA and LPS was avoided by the action of monounsaturated fatty acids such as oleic and palmitoleic acid. Oleic acid recovered cell viability after treatment with PA/LPS and, more interestingly, relieved endoplasmic reticulum (ER) stress. While palmitoleic acid improved the insulin release, this fatty acid seems to have more relevant effects upon the expression of regulatory pumps of intracellular Ca2+. Therefore, chain length and unsaturation of fatty acids are determinant cues in proteostasis of ß-cells and, consequently, on the regulation of calcium and insulin secretion.