Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339608

RESUMO

This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 µm/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 ± 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 ± 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.

2.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679416

RESUMO

In this paper, a different Fiber Loop Mirror (FLM) configuration with two circulators is presented. This configuration is demonstrated and characterized for sensing applications. This new design concept was used for strain and torsion discrimination. For strain measurement, the interference fringe displacement has a sensitivity of (0.576 ± 0.009) pm‧µÎµ-1. When the FFT (Fast Fourier Transformer) is calculated and the frequency shift and signal amplitude are monitored, the sensitivities are (-2.1 ± 0.3) × 10-4 nm-1 µÎµ-1 and (4.9 ± 0.3) × 10-7 µÎµ-1, respectively. For the characterization in torsion, an FFT peaks variation of (-2.177 ± 0.002) × 10-12 nm-1/° and an amplitude variation of (1.02 ± 0.06) × 10-3/° are achieved. This configuration allows the use of a wide range of fiber lengths and with different refractive indices for controlling the free spectral range (FSR) and achieving refractive index differences, i.e., birefringence, higher than 10-2, which is essential for the development of high sensitivity physical parameter sensors, such as operating on the Vernier effect. Furthermore, this FLM configuration allows the system to be balanced, which is not possible with traditional FLMs.


Assuntos
Fontes de Energia Elétrica , Fibras Ópticas , Birrefringência
3.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502017

RESUMO

In this study, an interrogation system based on an erbium-doped fiber ring cavity for refractive index measurements is presented and experimentally demonstrated. This cavity ring includes a 1 × 3 coupler wherein one of the fiber output ports is used to increase the optical power of the system by means of an FBG used as a reflector. The other two output ports are used as a refractive index sensing head and reference port, respectively. An experimental demonstration of this proposed sensor system for the measurement of a distinct refractive index is presented.


Assuntos
Érbio , Refratometria
4.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746342

RESUMO

In many areas, the analysis of a cylindrical structure is necessary, and a form to analyze it is by evaluating the diameter changes. Some areas can be cited: pipelines for oil or gas distribution and radial growth of trees whose diameter changes are directly related to irrigation and the radial expansion since it depends on the water soil deficit. For some species, these radial variations can change in around 5 mm. This paper proposes and experimentally investigates a sensor based on a core diameter mismatch technique for diameter changes measurement. The sensor structure is a combination of a cylindrical piece developed using a 3D printer and a Mach-Zehnder interferometer. The pieces were developed to assist in monitoring the diameter variation. It is formed by splicing an uncoated short section of MMF (Multimode Fiber) between two standard SMFs (Singlemode Fibers) called SMF-MMF-SMF (SMS), where the MMF length is 15 mm. The work is divided into two main parts. Firstly, the sensor was fixed at two points on the first developed piece, and the diameter reduction caused dips or peaks shift of the transmittance spectrum due to curvature and strain influence. The fixation point (FP) distances used are: 5 mm, 10 mm, and 15 mm. Finally, the setup with the best sensitivity was chosen, from first results, to develop another test with an optimization. This optimization is performed in the printed piece where two supports are created so that only the strain influences the sensor. The results showed good sensitivity, reasonable dynamic range, and easy setup reproduction. Therefore, the sensor could be used for diameter variation measurement for proposed applications.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Desenho de Equipamento , Interferometria/métodos , Fibras Ópticas , Água
5.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236750

RESUMO

An optical strain gauge based on a balloon-like interferometer structure formed by a bent standard single-mode fiber combined with a 3D printer piece has been presented and demonstrated, which can be used to measure displacement. The interferometer has a simple and compact size, easy fabrication, low cost, and is repeatable. The sensor is based on the interference between the core and cladding modes. This is caused by the fiber's curvature because when light propagates through the curved balloon-shaped interferometer region, a portion of it will be released from the core limitation and coupled to the cladding. The balloon has an axial displacement as a result of how the artwork was constructed. The sensor head is sandwiched between two cantilevers such that when there is a displacement, the dimension associated with the micro bend is altered. The sensor response as a function of displacement can be determined using wavelength shift or intensity change interrogation techniques. Therefore, this optical strain gauge is a good option for applications where structure displacement needs to be examined. The sensor presents a sensitivity of 55.014 nm for displacement measurements ranging from 0 to 10 mm and a strain sensitivity of 500.13 pm/µÏµ.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Desenho de Equipamento , Interferometria/métodos , Fibras Ópticas , Refratometria/métodos
6.
Sensors (Basel) ; 21(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801581

RESUMO

A Fabry-Pérot acoustic sensor based on a graphene oxide membrane was developed with the aim to achieve a faster and simpler fabrication procedure when compared to similar graphene-based acoustic sensors. In addition, the proposed sensor was fabricated using methods that reduce chemical hazards and environmental impacts. The developed sensor, with an optical cavity of around 246 µm, showed a constant reflected signal amplitude of 6.8 ± 0.1 dB for 100 nm wavelength range. The sensor attained a wideband operation range between 20 and 100 kHz, with a maximum signal-to-noise ratio (SNR) of 32.7 dB at 25 kHz. The stability and sensitivity to temperatures up to 90 °C was also studied. Moreover, the proposed sensor offers the possibility to be applied as a wideband microphone or to be applied in more complex systems for structural analysis or imaging.

7.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577333

RESUMO

Power transformers are central elements of power transmission systems and their deterioration can lead to system failures, causing major disruptions in service. Catastrophic failures can occur, posing major environmental hazards due to fires, explosions, or oil spillage. Early fault detection can be accomplished or estimated using electrical sensors or a chemical analysis of oil or gas samples. Conventional methods are incapable of real-time measurements with a low electrical noise due to time-consuming analyses or susceptibility to electromagnetic interference. Optical fiber sensors, passive elements that are immune to electromagnetic noise, are capable of structural monitoring by being enclosed in power transformers. In this work, optical fiber sensors embedded in 3D printed structures are studied for vibration monitoring. The fiber sensor is encapsulated between two pressboard spacers, simulating the conditions inside the power transformer, and characterized for vibrations with frequencies between 10 and 800 Hz, with a constant acceleration of 10 m/s2. Thermal aging and electrical tests are also accomplished, aiming to study the oil compatibility of the 3D printed structure. The results reported in this work suggest that structural monitoring in power transformers can be achieved using optical fiber sensors, prospecting real-time monitoring.

8.
Sensors (Basel) ; 20(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283622

RESUMO

The use of sensors in the real world is on the rise, providing information on medical diagnostics for healthcare and improving quality of life. Optical fiber sensors, as a result of their unique properties (small dimensions, capability of multiplexing, chemical inertness, and immunity to electromagnetic fields) have found wide applications, ranging from structural health monitoring to biomedical and point-of-care instrumentation. Furthermore, these sensors usually have good linearity, rapid response for real-time monitoring, and high sensitivity to external perturbations. Optical fiber sensors, thus, present several features that make them extremely attractive for a wide variety of applications, especially biomedical applications. This paper reviews achievements in the area of temperature optical fiber sensors, different configurations of the sensors reported over the last five years, and application of this technology in biomedical applications.


Assuntos
Termometria/métodos , Temperatura Corporal , Tecnologia de Fibra Óptica , Humanos , Interferometria , Sistemas Automatizados de Assistência Junto ao Leito , Ondas de Rádio , Termometria/instrumentação
9.
Sensors (Basel) ; 19(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698716

RESUMO

This work demonstrates the potential of combining a microsphere with a tip for the functionality of the contact sensor. This sensor consists of a tip aligned with the fiber core and a microsphere, which appears during tip formation. This new structure was produced using the electric arc machine. The sensor operation consists of the variation of the tip curvature, which causes a variation of the optical paths and, consequently, a change in the output signal. The study of this micro-cantilever consisted of an exploration of the contact mode. In addition, the sensor was characterized by temperature, which shows very low sensitivity and vibration. This last characterization was performed with two configurations parallel and perpendicular to the oscillating surface. The perpendicular case showed higher sensitivity and has an operating band of 0 Hz to 20 kHz. In this configuration, for frequencies up to 2 Hz, the intensity varies linearly with the frequencies and with a sensitivity of 0.032 ± 0.001 (Hz-1). For the parallel case, the operating band was from 1.5 kHz to 7 kHz.

10.
Sensors (Basel) ; 20(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877833

RESUMO

A configuration of a refractometer sensor is described with the aim of optically detecting the crystallization process of paracetamol. The developed sensing head is based on a conventional cleaved multi-mode fiber. The fiber tip sensor structure was submitted to contact with the liquid of interest (paracetamol fully dissolved in 40% v/v of ethanol/water) and the crystallization process of paracetamol, induced with continued exposure to air, was monitored in real time.


Assuntos
Acetaminofen/química , Cristalização , Fibras Ópticas , Refratometria/métodos , Etanol/química , Água/química
11.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835433

RESUMO

The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry-Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern. We demonstrate not only a considerable enhancement compared to current methods, but also better control of the sensitivity magnification factor, which scales up with the order of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today. In addition, this novel concept opens also new ways of dimensioning the sensing structures, together with improved fabrication tolerances.

12.
Sensors (Basel) ; 19(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678290

RESUMO

New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry⁻Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry⁻Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry⁻Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry⁻Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of -654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.

13.
Opt Express ; 24(13): 14053-65, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410566

RESUMO

Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 µm to just a few µm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

14.
Opt Express ; 23(12): 16063-70, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193580

RESUMO

In this work, a Fabry-Perot cavity based on a new silica tube design is proposed. The tube presents a cladding with a thickness of ~14 µm and a hollow core. The presence of four small rods, of ~20 µm diameter each, placed in diametrically opposite positions ensure the mechanical stability of the tube. The cavity, formed by splicing a section of the silica tube between two sections of single mode fiber, is characterized in strain and temperature (from room temperature to 900 °C). When the sensor is exposed to high temperatures, there is a change in the response to strain. The influence of the thermal annealing is investigated in order to improve the sensing head performance.

15.
Sensors (Basel) ; 15(4): 8042-53, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853404

RESUMO

A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.

16.
Opt Express ; 22(11): 13102-8, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921506

RESUMO

Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 µm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

17.
Opt Lett ; 39(20): 5937-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361124

RESUMO

An optical fiber sensor based on arrays of silica microspheres is proposed. The microspheres are produced separately using a fusion splicer and then also connected in series by fusion splicing. Three different sensors are presented, differing by the number of microspheres. Due to the geometry of the structures, different behaviors are obtained in strain measurements. Sensors with an odd number of microspheres are more sensitive to strain than the ones with an even number of microspheres. Additionally, the sensing heads are subjected to temperature where a sensitivity of 20.3 pm/°C is obtained in a range of 200°C.

18.
Opt Lett ; 38(15): 2927-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23903181

RESUMO

An intensity-based highly birefringent (Hi-Bi) fiber loop mirror (FLM) sensor is proposed which uses a wavelength-division multiplexing (WDM) fiber coupler. The effect of integrating the WDM coupler in a FLM configuration is first studied. A section of Hi-Bi (bow-tie) fiber of length 0.26 m is then placed in the fiber loop, making the spectral response of the device simultaneously dependent on the Hi-Bi fiber section and WDM coupler characteristics. When strain is applied to the sensing head, the spectral signal is modulated in amplitude, in contrast with the conventional Hi-Bi FLM sensors in which there are wavelength shifts. The sensor was characterized in strain and a sensitivity of (-2.2±0.4)×10(-3) µÎµ(-1) for a range of 300 µÎµ was attained. The self-referenced character of the sensor is noted.

19.
Opt Lett ; 38(6): 872-4, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503244

RESUMO

Phase-sensitive optical time-domain reflectometry (φOTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. We show in this Letter that modulation instability (MI) can induce a position-dependent signal fading in long-range φOTDR over conventional optical fibers. This fading leads to a complete masking of the interference signal recorded at certain positions and therefore to a sensitivity loss at these positions. We illustrate this effect both theoretically and experimentally. While this effect is detrimental in the context of distributed vibration analysis using φOTDR, we also believe that the technique provides a clear and insightful way to evidence the Fermi-Pasta-Ulam recurrence associated with the MI process.

20.
Opt Express ; 20(20): 21946-52, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037345

RESUMO

A high sensitivity Fabry-Pérot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 µm. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 µm a sensitivity of 15.4 pm/µÎµ was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (~0.81 pm/°C).


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Interferometria/instrumentação , Transdutores de Pressão , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa