RESUMO
Aging is accompanied by declining lung function and increasing susceptibility to lung diseases. The role of endothelial dysfunction and vascular remodeling in these changes is supported by growing evidence, but underlying mechanisms remain elusive. In this review we summarize functional, structural, and molecular changes in the aging pulmonary vasculature and explore how interacting aging and mechanobiological cues may drive progressive vascular remodeling in the lungs.
Assuntos
Doenças Vasculares , Remodelação Vascular , Envelhecimento , Biofísica , Humanos , PulmãoRESUMO
BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) can present with severe respiratory distress requiring intensive care unit (ICU)-level care. Such care often requires placement of an arterial line for monitoring of pulmonary disease progression, hemodynamics, and laboratory tests. During the first wave of the COVID-19 pandemic in March 2020, experienced physicians anecdotally reported multiple attempts, decreased insertion durations, and greater need for replacement of arterial lines in patients with COVID-19 due to persistent thrombosis. Because invasive procedures in patients with COVID-19 may increase the risk for caregiver infection, better defining difficulties in maintaining arterial lines in COVID-19 patients is important. We sought to explore the association between COVID-19 infection and arterial line thrombosis in critically ill patients. METHODS: In this primary exploratory analysis, a multivariable Fine-Gray subdistribution hazard model was used to retrospectively estimate the association between critically ill COVID-19 (versus sepsis/acute respiratory distress syndrome [ARDS]) patients and the risk of arterial line removal for thrombosis (with arterial line removal for any other reason treated as a competing risk). As a sensitivity analysis, we compared the number of arterial line clots per 1000 arterial line days between critically ill COVID-19 and sepsis/ARDS patients using multivariable negative binomial regression. RESULTS: We retrospectively identified 119 patients and 200 arterial line insertions in patients with COVID-19 and 54 patients and 68 arterial line insertions with non-COVID ARDS. Using a Fine-Gray subdistribution hazard model, we found the adjusted subdistribution hazard ratio (95% confidence interval [CI]) for arterial line clot to be 2.18 (1.06-4.46) for arterial lines placed in COVID-19 patients versus non-COVID-19 sepsis/ARDS patients ( P = .034). Patients with COVID-19 had 36.3 arterial line clots per 1000 arterial line days compared to 19.1 arterial line clots per 1000 arterial line days in patients without COVID-19 (adjusted incidence rate ratio [IRR] [95% CI], 1.78 [0.94-3.39]; P = .078). CONCLUSIONS: Our study suggests that arterial line complications due to thrombosis are more likely in COVID-19 patients and supports the need for further research on the association between COVID-19 and arterial line dysfunction requiring replacement.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Trombose , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias , Estado Terminal/epidemiologia , Unidades de Terapia Intensiva , Síndrome do Desconforto Respiratório/epidemiologiaRESUMO
BACKGROUND: Cell stress promotes degradation of mitochondria which release danger-associated molecular patterns that are catabolized to N-formylmethionine. We hypothesized that in critically ill adults, the response to N-formylmethionine is associated with increases in metabolomic shift-related metabolites and increases in 28-day mortality. METHODS: We performed metabolomics analyses on plasma from the 428-subject Correction of Vitamin D Deficiency in Critically Ill Patients trial (VITdAL-ICU) cohort and the 90-subject Brigham and Women's Hospital Registry of Critical Illness (RoCI) cohort. In the VITdAL-ICU cohort, we analyzed 983 metabolites at Intensive Care Unit (ICU) admission, day 3, and 7. In the RoCI cohort, we analyzed 411 metabolites at ICU admission. The association between N-formylmethionine and mortality was determined by adjusted logistic regression. The relationship between individual metabolites and N-formylmethionine abundance was assessed with false discovery rate correction via linear regression, linear mixed-effects, and Gaussian graphical models. RESULTS: Patients with the top quartile of N-formylmethionine abundance at ICU admission had a significantly higher adjusted odds of 28-day mortality in the VITdAL-ICU (OR, 2.4; 95%CI 1.5-4.0; P = 0.001) and RoCI cohorts (OR, 5.1; 95%CI 1.4-18.7; P = 0.015). Adjusted linear regression shows that with increases in N-formylmethionine abundance at ICU admission, 55 metabolites have significant differences common to both the VITdAL-ICU and RoCI cohorts. With increased N-formylmethionine abundance, both cohorts had elevations in individual short-chain acylcarnitine, branched chain amino acid, kynurenine pathway, and pentose phosphate pathway metabolites. CONCLUSIONS: The results indicate that circulating N-formylmethionine promotes a metabolic shift with heightened mortality that involves incomplete mitochondrial fatty acid oxidation, increased branched chain amino acid metabolism, and activation of the pentose phosphate pathway.
Assuntos
Estado Terminal , Cinurenina , Adulto , Feminino , Humanos , Aminoácidos de Cadeia Ramificada , Ácidos Graxos , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Metabolômica/métodos , N-Formilmetionina , Ensaios Clínicos como AssuntoRESUMO
Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-ß3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-ß3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.
Assuntos
Metaloproteinase 8 da Matriz/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Metaloproteinase 8 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/prevenção & controle , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Remodelação VascularRESUMO
BACKGROUND: Although acute respiratory distress syndrome (ARDS) is associated with high mortality, its direct causal link with death is unclear. Clarifying this link is important to justify costly research on prevention of ARDS. OBJECTIVE: To estimate the attributable mortality, if any, of ARDS. DESIGN: First, we performed a systematic review and meta-analysis of observational studies reporting mortality of critically ill patients with and without ARDS matched for underlying risk factor. Next, we conducted a survival analysis of prospectively collected patient-level data from subjects enrolled in three intensive care unit (ICU) cohorts to estimate the attributable mortality of critically ill septic patients with and without ARDS using a novel causal inference method. RESULTS: In the meta-analysis, 44 studies (47 cohorts) involving 56 081 critically ill patients were included. Mortality was higher in patients with versus without ARDS (risk ratio 2.48, 95% CI 1.86 to 3.30; p<0.001) with a numerically stronger association between ARDS and mortality in trauma than sepsis. In the survival analysis of three ICU cohorts enrolling 1203 critically ill patients, 658 septic patients were included. After controlling for confounders, ARDS was found to increase the mortality rate by 15% (95% CI 3% to 26%; p=0.015). Significant increases in mortality were seen for severe (23%, 95% CI 3% to 44%; p=0.028) and moderate (16%, 95% CI 2% to 31%; p=0.031), but not for mild ARDS. CONCLUSIONS: ARDS has a direct causal link with mortality. Our findings provide information about the extent to which continued funding of ARDS prevention trials has potential to impart survival benefit. PROSPERO REGISTRATION NUMBER: CRD42017078313.
Assuntos
Síndrome do Desconforto Respiratório , Estado Terminal , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Análise de SobrevidaRESUMO
Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.
Assuntos
Células Epiteliais/metabolismo , Homeostase/fisiologia , Inflamação/prevenção & controle , Autoantígeno Ku/metabolismo , Animais , Asma/patologia , Asma/prevenção & controle , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Estresse Oxidativo/fisiologia , Hipersensibilidade Respiratória/patologiaRESUMO
Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are causally linked to pulmonary arterial hypertension (PAH) pathogenesis. Carbonic anhydrase inhibition induces mild metabolic acidosis and exerts protective effects in hypoxic pulmonary hypertension. Carbonic anhydrases and metabolic acidosis are further known to modulate immune cell activation. To evaluate if carbonic anhydrase inhibition modulates macrophage activation, inflammation, and VSMC phenotypic switching in severe experimental pulmonary hypertension, pulmonary hypertension was assessed in Sugen 5416/hypoxia (SU/Hx) rats after treatment with acetazolamide or ammonium chloride (NH4Cl). We evaluated pulmonary and systemic inflammation and characterized the effect of carbonic anhydrase inhibition and metabolic acidosis in alveolar macrophages and bone marrow-derived macrophages (BMDMs). We further evaluated the treatment effects on VSMC phenotypic switching in pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs) and corroborated some of our findings in lungs and pulmonary arteries of patients with PAH. Both patients with idiopathic PAH and SU/Hx rats had increased expression of lung inflammatory markers and signs of PASMC dedifferentiation in pulmonary arteries. Acetazolamide and NH4Cl ameliorated SU/Hx-induced pulmonary hypertension and blunted pulmonary and systemic inflammation. Expression of carbonic anhydrase isoform 2 was increased in alveolar macrophages from SU/Hx animals, classically (M1) and alternatively (M2) activated BMDMs, and lungs of patients with PAH. Carbonic anhydrase inhibition and acidosis had distinct effects on M1 and M2 markers in BMDMs. Inflammatory cytokines drove PASMC dedifferentiation, and this was inhibited by acetazolamide and acidosis. The protective antiinflammatory effect of acetazolamide in pulmonary hypertension is mediated by a dual mechanism of macrophage carbonic anhydrase inhibition and systemic metabolic acidosis.
Assuntos
Acetazolamida/uso terapêutico , Cloreto de Amônio/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Acidose/induzido quimicamente , Acidose/complicações , Acidose/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proteínas Contráteis/biossíntese , Proteínas Contráteis/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/enzimologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Isoformas de Proteínas/antagonistas & inibidores , Artéria Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-DawleyRESUMO
PURPOSE: To initiate the archive of relaxation-weighted images that may help discriminate between pulmonary pathologies relevant to acute respiratory distress syndrome. MRI has the ability to distinguish pathologies by providing a variety of different contrast mechanisms. Lungs have historically been difficult to image with MRI but image quality is sufficient to begin cataloging the appearance of pathologies in T1 - and T2 -weighted images. This study documents T1 and the use of T1 contrast with four experimental rat lung pathologies. METHODS: Inversion-recovery and spoiled steady state images were made at 1.89 T to measure T1 and document contrast in rats with atelectasis, lipopolysaccharide-induced inflammation, ventilator-induced lung injury (VILI), and injury from saline lavage. Higher-resolution Ernst-angle images were made to see patterns of lung infiltrations. RESULTS: T1 -weighted images showed minimal contrast between pathologies, similar to T1 -weighted images of other soft tissues. Images taken shortly after magnetization inversion and displayed with inverted contrast highlight lung pathologies. Ernst-angle images distinguish the effects of T1 relaxation and spin density and display distinctive patterns. T1 for pathologies were: atelectasis, 1.25 ± 0.046 s; inflammation from instillation of lipopolysaccharide, 1.24 ± 0.015 s; VILI, 1.55 ± 0.064 s (p = 0.0022 vs. normal lung); and injury from saline lavage, 1.90±0.080 s (p = 0.0022 vs. normal lung; p = 0.0079 vs. VILI). T1 of normal lung and erector spinae muscle were 1.25 ± 0.028 s and 1.02 ± 0.027 s, respectively (p = 0.0022). CONCLUSIONS: Traditional T1 -weighting is subtle. However, images made with inverted magnetization and inverted contrast highlight the pathologies and Ernst-angle images aid in distinguishing pathologies.
Assuntos
Pneumopatias/diagnóstico por imagem , Lesão Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste , Processamento de Imagem Assistida por Computador , Inflamação/diagnóstico por imagem , Lipopolissacarídeos/uso terapêutico , Magnetismo , Masculino , Atelectasia Pulmonar/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico por imagemRESUMO
BACKGROUND: Respiratory pathology is a major driver of mortality in the intensive care unit (ICU), even in the absence of a primary respiratory diagnosis. Prior work has demonstrated that a visual scoring system applied to chest radiographs (CXR) is associated with adverse outcomes in ICU patients with Acute Respiratory Distress Syndrome (ARDS). We hypothesized that a simple, semi-quantitative CXR score would be associated with clinical outcomes for the general ICU population, regardless of underlying diagnosis. METHODS: All individuals enrolled in the Registry of Critical Illness at Brigham and Women's Hospital between June 2008 and August 2018 who had a CXR within 24 h of admission were included. Each patient's CXR was assigned an opacification score of 0-4 in each of four quadrants with the total score being the sum of all four quadrants. Multivariable negative binomial, logistic, and Cox regression, adjusted for age, sex, race, immunosuppression, a history of chronic obstructive pulmonary disease, a history of congestive heart failure, and APACHE II scores, were used to assess the total score's association with ICU length of stay (LOS), duration of mechanical ventilation, in-hospital mortality, 60-day mortality, and overall mortality, respectively. RESULTS: A total of 560 patients were included. Higher CXR scores were associated with increased mortality; for every one-point increase in score, in-hospital mortality increased 10% (OR 1.10, CI 1.05-1.16, p < 0.001) and 60-day mortality increased by 12% (OR 1.12, CI 1.07-1.17, p < 0.001). CXR scores were also independently associated with both ICU length of stay (rate ratio 1.06, CI 1.04-1.07, p < 0.001) and duration of mechanical ventilation (rate ratio 1.05, CI 1.02-1.07, p < 0.001). CONCLUSIONS: Higher values on a simple visual score of a patient's CXR on admission to the medical ICU are associated with increased in-hospital mortality, 60-day mortality, overall mortality, length of ICU stay, and duration of mechanical ventilation.
Assuntos
Estado Terminal , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Tórax/diagnóstico por imagem , APACHE , Adulto , Idoso , Biomarcadores/sangue , Feminino , Mortalidade Hospitalar , Humanos , Tempo de Internação , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Respiração Artificial , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND: The acute respiratory distress syndrome (ARDS) is characterized by the acute onset of hypoxemia and bilateral lung infiltrates in response to an inciting event, and is associated with high morbidity and mortality. Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are at increased risk for ARDS. We hypothesized that HSCT patients with ARDS would have a unique transcriptomic profile identifiable in peripheral blood compared to those that did not undergo HSCT. METHODS: We isolated RNA from banked peripheral blood samples from a biorepository of critically ill ICU patients. RNA-Seq was performed on 11 patients with ARDS (5 that had undergone HSCT and 6 that had not) and 12 patients with sepsis without ARDS (5 that that had undergone HCST and 7 that had not). RESULTS: We identified 687 differentially expressed genes between ARDS and ARDS-HSCT (adjusted p-value < 0.01), including IFI44L, OAS3, LY6E, and SPATS2L that had increased expression in ARDS vs. ARDS-HSCT; these genes were not differentially expressed in sepsis vs sepsis-HSCT. Gene ontology enrichment analysis revealed that many differentially expressed genes were related to response to type I interferon. CONCLUSIONS: Our findings reveal significant differences in whole blood transcriptomic profiles of patients with non-HSCT ARDS compared to ARDS-HSCT patients and point toward different immune responses underlying ARDS and ARDS-HSCT that contribute to lung injury.
Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Adulto , Feminino , Transplante de Células-Tronco Hematopoéticas/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Síndrome do Desconforto Respiratório/sangue , Análise de Sequência de RNA/tendênciasRESUMO
Lung function is inherently mechanical in nature and depends on the capacity to conduct air and blood to and from the gas exchange regions. Variations in the elastic properties of the human lung across anatomical compartments and with aging are likely important determinants of lung function but remain relatively poorly characterized. Here we applied atomic force microscopy microindentation to characterize human lung tissue from subjects ranging in age from 11 to 60 yr old. We observed striking anatomical variations in elastic modulus, with the airways (200- to 350-µm diameter) the stiffest and the parenchymal regions the most compliant. Vessels (diameter < 100 µm) represented an intermediate mechanical environment and displayed diameter-dependent trends in elastic modulus. Binning our samples into younger (11-30 yr old) and older (41-60 yr old) groups, we observed significant age-related increases in stiffness in parenchymal and vessel compartments, with the most pronounced changes in the vessels. To investigate cellular mechanisms that might contribute to vascular stiffening with aging, we studied primary human pulmonary artery smooth muscle cells from subjects ranging in age from 11 to 60 yr old. While we observed no change in the mechanical properties of the cells themselves, we did observe trends toward increases in traction forces and extracellular matrix deposition with aging. These results demonstrate age-related changes in tissue mechanical properties that likely contribute to impaired lung function with aging and underscore the potential to identify mechanisms that contribute to mechanical tissue remodeling through the study of human cells and tissues from across the aging spectrum.
Assuntos
Envelhecimento/metabolismo , Remodelação das Vias Aéreas , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Pulmão/metabolismo , Pulmão/ultraestrutura , Adolescente , Adulto , Criança , Módulo de Elasticidade , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. METHODS: We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. RESULTS: Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/µl plasma relative to those with an ND1 mtDNA level < 3200 copies/µl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/µl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. CONCLUSIONS: Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively.
Assuntos
DNA Mitocondrial/farmacologia , Metabolômica/métodos , Adulto , Idoso , Boston , Estado Terminal/terapia , DNA Mitocondrial/efeitos adversos , DNA Mitocondrial/uso terapêutico , Análise Discriminante , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros/estatística & dados numéricosRESUMO
Oxidative stress resulting from inflammatory responses that occur during acute lung injury and sepsis can initiate changes in mitochondrial function. Autophagy regulates cellular processes in the setting of acute lung injury, sepsis, and oxidative stress by modulating the immune response and facilitating turnover of damaged cellular components. We have shown that mesenchymal stromal cells (MSCs) improve survival in murine models of sepsis by also regulating the immune response. However, the effect of autophagy on MSCs and MSC mitochondrial function during oxidative stress is unknown. This study investigated the effect of depletion of autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) and beclin 1 (BECN1) on the response of MSCs to oxidative stress. MSCs were isolated from wild-type (WT) and LC3B-/- or Becn1+/- mice. MSCs from the LC3B-/- and Becn1+/- animals had increased susceptibility to oxidative stress-induced cell death as compared with WT MSCs. The MSCs depleted of autophagic proteins also had impaired mitochondrial function (decreased intracellular ATP, reduced mitochondrial membrane potential, and increased mitochondrial reactive oxygen species production) under oxidative stress as compared with WT MSCs. In WT MSCs, carbon monoxide (CO) preconditioning enhanced autophagy and mitophagy, and rescued the cells from oxidative stress-induced death. CO preconditioning was not able to rescue the decreased survival of MSCs from the LC3B-/- and Becn1+/- animals, further supporting the tenet that CO exerts its cytoprotective effects via the autophagy pathway.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Células Cultivadas , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , FenótipoRESUMO
Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinkovic A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiological feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Remodelação das Vias Aéreas/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo-Oxigenase 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfoproteínas/metabolismo , Rigidez Vascular/fisiologia , Adulto , Animais , Movimento Celular , Proliferação de Células , Demografia , Matriz Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar , Masculino , Pessoa de Meia-Idade , Fenótipo , Artéria Pulmonar/citologia , Ratos Sprague-Dawley , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAPRESUMO
BACKGROUND: Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status. METHODS: We performed a metabolomics study on biorepository samples collected from a single academic medical center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of chemical-protein target interactions important in vitamin D status. RESULTS: Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71-0.93). The metabolite pathways related to glutathione metabolism and glutamate metabolism are significantly enriched with regard to vitamin D status. CONCLUSION: Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.
Assuntos
Estado Terminal/reabilitação , Metaboloma/fisiologia , Síndrome de Resposta Inflamatória Sistêmica/complicações , Vitamina D/análise , APACHE , Centros Médicos Acadêmicos/organização & administração , Adulto , Idoso , Boston , Estudos de Coortes , Estado Terminal/epidemiologia , Análise Discriminante , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sistema de Registros/estatística & dados numéricos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/sangueRESUMO
BACKGROUND: Acute respiratory distress syndrome (ARDS) is potentially underrecognized by clinicians. Early recognition and subsequent optimal treatment of patients with ARDS may be facilitated by usage of biomarkers. Surfactant protein D (SP-D), a marker of alveolar epithelial injury, has been proposed as a potentially useful biomarker for diagnosis of ARDS in a few studies. We tried to validate the performance of plasma SP-D levels for diagnosis of ARDS. METHODS: We conducted a retrospective analysis using data from three (two in USA and one in Korea) prospective biobank cohorts involving 407 critically ill patients admitted to medical intensive care unit (ICU). A propensity score matched analysis (patients with versus without ARDS, matched 1:1) was carried out using significant variables from multiple logistic regression. The diagnostic accuracy of plasma SP-D as a diagnostic marker of ARDS was assessed by receiver operating characteristic curve analysis. RESULTS: Out of the 407 subjects included in this study, 39 (10%) patients fulfilled ARDS criteria. Patients with ARDS had higher SP-D levels in plasma (p < 0.01) and higher hospital-mortality (p < 0.001) than those without ARDS. Thirty eight subjects with ARDS (cases) were successfully matched for propensity for ARDS with 38 subjects without ARDS (controls). Plasma levels of SP-D were higher in cases with ARDS compared to their matched controls without ARDS [median 20.8 ng/mL (interquartile range, 12.7-38.4) versus 7.9 (4.1-17.0); p = 0.001]. The area under the receiver operating characteristic curve for SP-D for the diagnosis of ARDS was 0.71 (95% confidence intervals, 0.60-0.83). A cut-off point of 12.7 ng/mL for SP-D yielded sensitivity of 74% and specificity of 63%. CONCLUSIONS: High levels of SP-D within 48 h after ICU admission might serve as a diagnostic marker for ARDS in patients hospitalized in medical ICU. Further prospective trials are required to validate the diagnostic role of SP-D in ARDS, and if its usefulness is greater in direct than in indirect ARDS, as well as across different strata of severity of ARDS.
Assuntos
Proteína D Associada a Surfactante Pulmonar/sangue , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/diagnóstico , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estado Terminal , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Curva ROC , República da Coreia , Estudos Retrospectivos , Sensibilidade e Especificidade , Estados UnidosRESUMO
Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI. Sprague-Dawley rats were untreated or treated with intratracheal lipopolysaccharide or PBS. After 48 h, animals were mechanically ventilated for up to 15 h to induce VILI. Free induction decay (FID)-projection images were made hourly. Image data were collected continuously for 30 min and divided into 13 phases of the ventilatory cycle to make cinematic images. Interleaved measurements of respiratory mechanics were performed using a flexiVent ventilator. The degree of lung infiltration was quantified in serial images throughout the progression or resolution of VILI. MRI detected VILI significantly earlier (3.8 ± 1.6 h) than it was detected by altered lung mechanics (9.5 ± 3.9 h, P = 0.0156). Animals with VILI had a significant increase in the Index of Infiltration (P = 0.0027), and early regional lung infiltrates detected by MRI correlated with edema and inflammatory lung injury on histopathology. We were also able to visualize and quantify regression of VILI in real time upon institution of protective mechanical ventilation. Magnetic resonance lung imaging can be utilized to investigate mechanisms underlying the development and propagation of ALI, and to test the therapeutic effects of new treatments and ventilator strategies on the resolution of ALI.
Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico por imagem , Resistência das Vias Respiratórias , Animais , Lipopolissacarídeos/farmacologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Infiltração de Neutrófilos , Ratos Sprague-Dawley , Respiração Artificial , Lesão Pulmonar Induzida por Ventilação Mecânica/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologiaRESUMO
OBJECTIVES: Mesenchymal stromal cells are being investigated as a cell-based therapy for a number of disease processes, with promising results in animal models of systemic inflammation and sepsis. Studies are ongoing to determine ways to further improve the therapeutic potential of mesenchymal stromal cells. A gas molecule that improves outcome in experimental sepsis is carbon monoxide. We hypothesized that preconditioning of mesenchymal stromal cells with carbon monoxide ex vivo would promote further therapeutic benefit when cells are administered in vivo after the onset of polymicrobial sepsis in mice. DESIGN: Animal study and primary cell culture. SETTING: Laboratory investigation. SUBJECTS: BALB/c mice. INTERVENTIONS: Polymicrobial sepsis was induced by cecal ligation and puncture. Mesenchymal stromal cells, mesenchymal stromal cells-conditioned with carbon monoxide, fibroblasts, or fibroblasts-conditioned with carbon monoxide were delivered by tail vein injections to septic mice. The mice were assessed for survival, bacterial clearance, and the inflammatory response during sepsis in each of the groups. Mesenchymal stromal cells were also assessed for their ability to promote bacterial phagocytosis by neutrophils, the production of specialized proresolving lipid mediators, and their importance for mesenchymal stromal cells function using gene silencing. MEASUREMENTS AND MAIN RESULTS: Ex vivo preconditioning with carbon monoxide allowed mesenchymal stromal cells to be administered later after the onset of sepsis (6 hr), and yet maintain their therapeutic effect with increased survival. Carbon monoxide preconditioned mesenchymal stromal cells were also able to alleviate organ injury, improve bacterial clearance, and promote the resolution of inflammation. Mesenchymal stromal cells exposed to carbon monoxide, with docosahexaenoic acid substrate, produced specialized proresolving lipid mediators, particularly D-series resolvins, which promoted survival. Silencing of lipoxygenase pathways (5-lipoxygenase and 12/15-lipoxygenase), which are important enzymes for specialized proresolving lipid mediator biosynthesis, resulted in a loss of therapeutic benefit bestowed on mesenchymal stromal cells by carbon monoxide. CONCLUSIONS: Taken together, these data suggest that production of specialized proresolving lipid mediators contribute to improved mesenchymal stromal cell efficacy when exposed to carbon monoxide, resulting in an improved therapeutic response during sepsis.