RESUMO
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Alelos , Predisposição Genética para Doença/genética , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genéticaRESUMO
Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.
Assuntos
Algoritmos , Teorema de Bayes , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Modelos Genéticos , Locos de Características QuantitativasRESUMO
Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.
Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Adulto , Humanos , Córtex Cerebral/anatomia & histologia , Córtex Pré-Frontal , EncéfaloRESUMO
Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.
Assuntos
Doença de Parkinson , Humanos , Feminino , Masculino , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Caracteres Sexuais , Fenótipo , EncéfaloRESUMO
The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.
Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Humanos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Masculino , Feminino , Adolescente , Estudos Longitudinais , Interação Gene-Ambiente , Criança , Meio AmbienteRESUMO
Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402-776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.
Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Depressão/genética , Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME; however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive DevelopmentSM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Conectoma/métodos , AlgoritmosRESUMO
Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genéticaRESUMO
The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Encéfalo , Transtorno Bipolar/genéticaRESUMO
Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
AIMS: Anxiety disorders are prevalent and anxiety symptoms (ANX) co-occur with many psychiatric disorders. We aimed to identify genomic loci associated with ANX, characterize its genetic architecture, and genetic overlap with psychiatric disorders. METHODS: We included a genome-wide association study of ANX (meta-analysis of UK Biobank and Million Veterans Program, n = 301,732), schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), and validated the findings in the Norwegian Mother, Father, and Child Cohort (n = 95,841). We employed the bivariate causal mixture model and local analysis of covariant association to characterize the genetic architecture including overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of loci associated with anxiety and shared with psychiatric disorders. RESULTS: Anxiety was polygenic with 12.9k genetic variants and overlapped extensively with psychiatric disorders (4.1k-11.4k variants) with predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 119 novel loci for anxiety by conditioning on the psychiatric disorders, and loci shared between anxiety and MD n = 47 $$ \left(n=47\right) $$ , BIP n = 33 $$ \left(n=33\right) $$ , SCZ n = 71 $$ \left(n=71\right) $$ , ADHD n = 20 $$ \left(n=20\right) $$ , and ASD n = 5 $$ \left(n=5\right) $$ . Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways including cell adhesion and neurofibrillary tangle compared with genes annotated to the shared loci. CONCLUSIONS: Anxiety is highly polygenic phenotype with extensive genetic overlap with psychiatric disorders, and we identified novel loci for anxiety implicating new molecular pathways. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified molecular underpinnings may lead to potential drug targets.
RESUMO
BACKGROUND: Neuroinflammation is involved in the pathophysiology of Alzheimer's disease (AD), including immune-linked genetic variants and molecular pathways, microglia and astrocytes. Multiple Sclerosis (MS) is a chronic, immune-mediated disease with genetic and environmental risk factors and neuropathological features. There are clinical and pathobiological similarities between AD and MS. Here, we investigated shared genetic susceptibility between AD and MS to identify putative pathological mechanisms shared between neurodegeneration and the immune system. METHODS: We analysed GWAS data for late-onset AD (N cases = 64,549, N controls = 634,442) and MS (N cases = 14,802, N controls = 26,703). Gaussian causal mixture modelling (MiXeR) was applied to characterise the genetic architecture and overlap between AD and MS. Local genetic correlation was investigated with Local Analysis of [co]Variant Association (LAVA). The conjunctional false discovery rate (conjFDR) framework was used to identify the specific shared genetic loci, for which functional annotation was conducted with FUMA and Open Targets. RESULTS: MiXeR analysis showed comparable polygenicities for AD and MS (approximately 1800 trait-influencing variants) and genetic overlap with 20% of shared trait-influencing variants despite negligible genetic correlation (rg = 0.03), suggesting mixed directions of genetic effects across shared variants. conjFDR analysis identified 16 shared genetic loci, with 8 having concordant direction of effects in AD and MS. Annotated genes in shared loci were enriched in molecular signalling pathways involved in inflammation and the structural organisation of neurons. CONCLUSIONS: Despite low global genetic correlation, the current results provide evidence for polygenic overlap between AD and MS. The shared loci between AD and MS were enriched in pathways involved in inflammation and neurodegeneration, highlighting new opportunities for future investigation.
Assuntos
Doença de Alzheimer , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Sistema Imunitário , Loci Gênicos , Inflamação/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Twin and family studies have historically aimed to partition phenotypic variance into components corresponding to additive genetic effects (A), common environment (C), and unique environment (E). Here we present the ACE Model and several extensions in the Adolescent Brain Cognitive Developmentâ Study (ABCD Study®), employed using the new Fast Efficient Mixed Effects Analysis (FEMA) package. In the twin sub-sample (n = 924; 462 twin pairs), heritability estimates were similar to those reported by prior studies for height (twin heritability = 0.86) and cognition (twin heritability between 0.00 and 0.61), respectively. Incorporating SNP-derived genetic relatedness and using the full ABCD Study® sample (n = 9,742) led to narrower confidence intervals for all parameter estimates. By leveraging the sparse clustering method used by FEMA to handle genetic relatedness only for participants within families, we were able to take advantage of the diverse distribution of genetic relatedness within the ABCD Study® sample.
Assuntos
Encéfalo , Cognição , Fenótipo , Projetos de Pesquisa , Polimorfismo de Nucleotídeo Único/genética , Modelos GenéticosRESUMO
Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Encéfalo/patologia , Fenótipo , Tálamo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci GênicosRESUMO
Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.
Assuntos
Transtornos Mentais , Transtornos de Enxaqueca , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética , Transtornos de Enxaqueca/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Psychiatric disorders are complex clinical conditions with large heterogeneity and overlap in symptoms, genetic liability and brain imaging abnormalities. Building on a dimensional conceptualization of mental health, previous studies have reported genetic overlap between psychiatric disorders and population-level mental health, and between psychiatric disorders and brain functional connectivity. Here, in 30,701 participants aged 45-82 from the UK Biobank we map the genetic associations between self-reported mental health and resting-state fMRI-based measures of brain network function. Multivariate Omnibus Statistical Test revealed 10 genetic loci associated with population-level mental symptoms. Next, conjunctional FDR identified 23 shared genetic variants between these symptom profiles and fMRI-based brain network measures. Functional annotation implicated genes involved in brain structure and function, in particular related to synaptic processes such as axonal growth (e.g. NGFR and RHOA). These findings provide further genetic evidence of an association between brain function and mental health traits in the population.
Assuntos
Conectoma , Saúde Mental , Humanos , Conectoma/métodos , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Reino Unido , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética/métodosRESUMO
Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Depressão , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Loci GênicosRESUMO
Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from a reference panel of 11 million SNPs, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities (as a fraction of the reference panel) ranging from ≃ 2 × 10-5 to ≃ 4 × 10-3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.
Assuntos
Estudos de Associação Genética , Heterogeneidade Genética , Padrões de Herança/fisiologia , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Estudos de Associação Genética/métodos , Estudos de Associação Genética/estatística & dados numéricos , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Heterozigoto , Humanos , Desequilíbrio de Ligação , Herança Multifatorial , Distribuição Normal , Fenótipo , Característica Quantitativa HerdávelRESUMO
INTRODUCTION: There is a pressing need for non-invasive, cost-effective tools for early detection of Alzheimer's disease (AD). METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS. RESULTS: The MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau. DISCUSSION: The MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment. HIGHLIGHTS: A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Atrofia/patologia , Progressão da DoençaRESUMO
Genome-Wide Association studies have typically been limited to univariate analysis in which a single outcome measure is tested against millions of variants. Recent work demonstrates that a Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, MOSTest has resulted in a drastic improvement in power to discover loci when compared to established approaches (min-P). One question that arises is how well these discovered loci replicate in independent data. Here we perform 10 times cross validation within 34,973 individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth (>1,000 dimensionality for each). By deploying a replication method that aggregates discovered effects distributed across multiple phenotypes, termed PolyVertex Score (MOSTest-PVS), we demonstrate a higher replication yield and comparable replication rate of discovered loci for MOSTest (# replicated loci: 242-496, replication rate: 96-97%) in independent data when compared with the established min-P approach (# replicated loci: 26-55, replication rate: 91-93%). An out-of-sample replication of discovered loci was conducted with a sample of 4,069 individuals from the Adolescent Brain Cognitive Development® (ABCD) study, who are on average 50 years younger than UK Biobank individuals. We observe a higher replication yield and comparable replication rate of MOSTest-PVS compared to min-P. This finding underscores the importance of using well-powered multivariate techniques for both discovery and replication of high dimensional phenotypes in Genome-Wide Association studies.