Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Med ; 20: 46-56, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24395569

RESUMO

Hyperactivation of signal transducer and activator of transcription 3 (STAT3) has been linked to tumorigenesis in most malignancies, including head and neck squamous cell carcinoma. Intravenous delivery of a chemically modified cyclic STAT3 decoy oligonucleotide with improved serum and thermal stability demonstrated antitumor efficacy in conjunction with downmodulation of STAT3 target gene expression such as cyclin D1 and Bcl-X(L) in a mouse model of head and neck squamous cell carcinoma. The purpose of the present study was to determine the toxicity and dose-dependent antitumor efficacy of the cyclic STAT3 decoy after multiple intravenous doses in Foxn1 nu mice in anticipation of clinical translation. The two doses (5 and 10 mg/kg) of cyclic STAT3 decoy demonstrated a significant decrease in tumor volume compared with the control groups (mutant cyclic STAT3 decoy or saline) in conjunction with downmodulation of STAT3 target gene expression. There was no dose-dependent effect of cyclic STAT3 decoy on tumor volume or STAT3 target gene expression. There were no significant changes in body weights between the groups during the dosing period, after the dosing interval or on the day of euthanasia. No hematology or clinical chemistry parameters suggested toxicity of the cyclic STAT3 decoy compared with saline control. No gross or histological pathological abnormalities were noted at necropsy in any of the animals. These findings suggest a lack of toxicity of intravenous administration of a cyclic STAT3 decoy oligonucleotide. In addition, comparable antitumor effects indicate a lack of dose response at the two dose levels investigated.


Assuntos
Antineoplásicos/administração & dosagem , Oligonucleotídeos/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Administração Intravenosa , Animais , Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Nível de Efeito Adverso não Observado , Oligonucleotídeos/toxicidade , Ratos Sprague-Dawley
2.
Carcinogenesis ; 30(11): 1848-56, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19762335

RESUMO

Treatment of human head and neck squamous cell carcinoma (HNSCC) cell lines with guggulsterone, a widely available, well-tolerated nutraceutical, demonstrated dose-dependent decreases in cell viability with EC(50)s ranging from 5 to 8 microM. Guggulsterone induced apoptosis and cell cycle arrest, inhibited invasion and enhanced the efficacy of erlotinib, cetuximab and cisplatin in HNSCC cell lines. Guggulsterone induced decreased expression of both phosphotyrosine and total signal transducer and activator of transcription (STAT)-3, which contributed to guggulsterone's growth inhibitory effect. Hypoxia-inducible factor (HIF)-1alpha was also decreased in response to guggulsterone treatment. In a xenograft model of HNSCC, guggulsterone treatment resulted in increased apoptosis and decreased expression of STAT3. In vivo treatment with a guggulsterone-containing natural product, Guggulipid, resulted in decreased rates of tumor growth and enhancement of cetuximab's activity. Our results suggest that guggulsterone-mediated inhibition of STAT3 and HIF-1alpha provide a biologic rationale for further clinical investigation of this compound in the treatment of HNSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fitoterapia , Pregnenodionas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Commiphora , Sinergismo Farmacológico , Cloridrato de Erlotinib , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Camundongos , Camundongos Nus , Transplante de Neoplasias , Preparações de Plantas/farmacologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores
3.
Mol Pharmacol ; 73(3): 627-38, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18025070

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common malignancies worldwide, with low 5-year survival rates. Current strategies that block epidermal growth factor receptor (EGFR) have limited effects when administered as single agents. Targeting EGFR via intratumoral administration of phosphorothioate-modified antisense oligonucleotides has antitumor efficacy in xenograft models of SCCHN. Because intratumoral delivery of therapeutic agents has limited clinical application, the present study was undertaken to examine the therapeutic mechanisms of systemically delivered phosphorothioate-modified EGFR antisense oligonucleotides alone, or in combination with docetaxel, in a SCCHN xenograft model. EGFR antisense oligonucleotides were administered at 5 mg/kg i.p. daily in athymic mice bearing 1483 human SCCHN xenografts alone or in combination with docetaxel at 2.5 mg/kg i.p. once a week for 4 weeks. Administration of EGFR antisense oligonucleotides in combination with docetaxel improved antitumor efficacy and resulted in lower expression levels of EGFR, fewer proliferating cells, and more apoptotic cells in the tumors compared with controls. Systemic administration of phosphorothioated EGFR antisense oligonucleotides for 30 days increased the retention of docetaxel in the tumor by approximately 4-fold compared with tumors treated with docetaxel alone or docetaxel and EGFR sense oligonucleotides (P < 0.05). Combination of EGFR antisense oligonucleotides with low doses of docetaxel has antitumor efficacy, and it may be an effective treatment strategy for SCCHN.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Taxoides/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Feminino , Humanos , Imuno-Histoquímica , Injeções Intraperitoneais , Camundongos , Camundongos Nus , Modelos Biológicos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Proteína Oncogênica v-akt/metabolismo , Distribuição Aleatória , Estatística como Assunto , Taxoides/administração & dosagem , Taxoides/efeitos adversos , Taxoides/sangue , Taxoides/farmacocinética , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 66(24): 11831-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178880

RESUMO

G protein-coupled receptors (GPCR) and the epidermal growth factor receptor (EGFR) are often both overexpressed and contribute to the growth of cancers by activating autocrine pathways. GPCR ligands have been reported to trigger EGFR signaling via receptor cross-talk in cancer cells. Here, we show that GPCR ligands prostaglandin E2 (PGE2) and bradykinin (BK) activate EGFR signaling. Inhibition of EGFR using several strategies, including small-molecule inhibitors and an EGFR-specific antibody, resulted in partial attenuation of signaling downstream of EGFR. PGE2 and BK triggered EGFR signaling by increasing selective autocrine release of transforming growth factor-alpha (TGF-alpha). Inhibition of tumor necrosis factor-alpha-converting enzyme abrogated BK- or PGE2-mediated activation of EGFR signaling. Both PGE2 and BK stimulated head and neck squamous cell carcinoma (HNSCC) invasion via EGFR. Treatment of HNSCC cells with the BK antagonist CU201 resulted in growth inhibition. The combination of CU201 with the EGFR small-molecule inhibitor erlotinib resulted in additive inhibitory effects on HNSCC cell growth in vitro. Inhibition of the PGE2 synthesis pathway with sulindac induced HNSCC cytotoxicity at high doses (EC(50), 620 micromol/L). However, combined inhibition of both EGFR with the tyrosine kinase inhibitor erlotinib and GPCR with sulindac at low doses of 6 and 310 micromol/L, respectively, resulted in synergistic killing of HNSCC tumor cells. Combined blockade of both EGFR and GPCRs may be a rational strategy to treat cancers, including HNSCC that shows cross-talk between GPCR and EGFR signaling pathways.


Assuntos
Carcinoma de Células Escamosas/patologia , Receptores ErbB/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Bradicinina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Receptores ErbB/deficiência , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Receptor Cross-Talk , Transdução de Sinais
5.
Clin Cancer Res ; 12(17): 5064-73, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951222

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinoma (HNSCC) where expression levels correlate with decreased survival. Therapies that block EGFR have shown limited efficacy in clinical trials and primarily when combined with standard therapy. The most common form of mutant EGFR (EGFRvIII) has been described in several cancers, chiefly glioblastoma. The present study was undertaken to determine the incidence of EGFRvIII expression in HNSCC and the biological consequences of EGFRvIII on tumor growth in response to EGFR targeting. EXPERIMENTAL DESIGN: Thirty-three HNSCC tumors were evaluated by immunostaining and reverse transcription-PCR for EGFRvIII expression. A representative HNSCC cell line was stably transfected with an EGFRvIII expression construct. EGFRvIII-expressing cells and vector-transfected controls were compared for growth rates in vitro and in vivo as well as chemotherapy-induced apoptosis and the consequences of EGFR inhibition using the chimeric monoclonal antibody C225/cetuximab/Erbitux. RESULTS: EGFRvIII expression was detected in 42% of HNSCC tumors where EGFRvIII was always found in conjunction with wild-type EGFR. HNSCC cells expressing EGFRvIII showed increased proliferation in vitro and increased tumor volumes in vivo compared with vector-transfected controls. Furthermore, EGFRvIII-transfected HNSCC cells showed decreased apoptosis in response to cisplatin and decreased growth inhibition following treatment with C225 compared with vector-transfected control cells. CONCLUSIONS: EGFRvIII is expressed in HNSCC where it contributes to enhanced growth and resistance to targeting wild-type EGFR. The antitumor efficacy of EGFR targeting strategies may be enhanced by the addition of EGFRvIII-specific blockade.


Assuntos
Carcinoma de Células Escamosas/genética , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Transplante de Neoplasias , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transplante Heterólogo
6.
J Chem Biol ; 10(3): 129-141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684999

RESUMO

Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.

7.
J Clin Invest ; 126(1): 169-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619122

RESUMO

BACKGROUND: Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC. METHODS: Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation. RESULTS: Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2. CONCLUSION: In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches. FUNDING: National Cancer Institute, American Cancer Society, Agency for Science, Technology and Research of Singapore, and Gilead Sciences Inc.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Dasatinibe/uso terapêutico , Receptores com Domínio Discoidina , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
8.
Neoplasia ; 17(3): 256-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25810010

RESUMO

Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 3 has been implicated in cell proliferation and survival of many cancers including head and neck squamous cell carcinoma (HNSCC). AZD1480, an orally active pharmacologic inhibitor of JAK1/JAK2, has been tested in several cancer models. In the present study, the in vitro and in vivo effects of AZD1480 were evaluated in HNSCC preclinical models to test the potential use of JAK kinase inhibition for HNSCC therapy. AZD1480 treatment decreased HNSCC proliferation in HNSCC cell lines with half maximal effective concentration (EC50) values ranging from 0.9 to 4 µM in conjunction with reduction of pSTAT3(Tyr705) expression. In vivo antitumor efficacy of AZD1480 was demonstrated in patient-derived xenograft (PDX) models derived from two independent HNSCC tumors. Oral administration of AZD1480 reduced tumor growth in conjunction with decreased pSTAT3(Tyr705) expression that was observed in both PDX models. These findings suggest that the JAK1/2 inhibitors abrogate STAT3 signaling and may be effective in HNSCC treatment approaches.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Janus Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Dosagem de Genes , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Camundongos , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Neoplasia ; 14(11): 1005-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23226094

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/metabolismo , Imidazóis/farmacologia , Complexos Multiproteicos/metabolismo , Quinazolinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Cloridrato de Erlotinib , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oral Oncol ; 48(11): 1136-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22732263

RESUMO

OBJECTIVE: Targeting the epidermal growth factor receptor (EGFR) using the tyrosine kinase inhibitor (TKI) erlotinib has demonstrated activity in aerodigestive tract malignancies. Co-targeting of the G-protein-coupled receptor cyclooxygenase (COX) with EGFR inhibitors has shown promise in preclinical models and early phase clinical studies. MATERIALS AND METHODS: We studied the modulation of serum proteins after neoadjuvant treatment with erlotinib with or without sulindac in head and neck cancer patients. In a prospective, randomized, double-blind clinical trial, paired serum samples were obtained before and after neoadjuvant treatment in three groups of patients (n = 23 total), who were randomized to receive 7-14 consecutive days of erlotinib alone, erlotinib plus sulindac, or placebo. Two separate multiplexed ELISA systems (SearchLight™ or Luminex™) were used to measure serum biomarkers. HGF and IL-6 levels were tested on both systems, and validated using single analyte ELISAs. RESULTS: Several analytes were significantly altered (generally decreased) post-treatment, in patients who received erlotinib (with or without sulindac) as well as in the placebo groups. No single analyte was differentially altered across the three treatment groups using either multiplex platform. Single HGF ELISA suggested a nonspecific decrease in all patients. CONCLUSION: These results demonstrate the importance of a placebo group when assessing changes in expression of serum biomarkers. While multiplex platforms can provide quantitative information on a large number of serum analytes, results should be cautiously compared across platforms due to their intrinsic features. Furthermore, the dynamic range of expression of a single analyte is constrained in multiplex versus standard ELISA.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/sangue , Neoplasias de Cabeça e Pescoço/sangue , Adulto , Idoso , Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática/métodos , Receptores ErbB/sangue , Cloridrato de Erlotinib , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fator de Crescimento de Hepatócito/sangue , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Projetos Piloto , Placebos/administração & dosagem , Estudos Prospectivos , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Sulindaco/administração & dosagem , Fator de Crescimento Transformador alfa/sangue
11.
Autophagy ; 8(12): 1873-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22995770

RESUMO

The proteasome inhibitor bortezomib has shown remarkable clinical success in the treatment of multiple myeloma. However, the efficacy and mechanism of action of bortezomib in solid tumor malignancies is less well understood. In addition, the use of this first-in-class proteasome inhibitor is limited by several factors, including off-target effects that lead to adverse toxicities. We recently reported the impact and mechanisms of carfilzomib and oprozomib, second-in-class proteasome inhibitors with higher specificities and reduced toxicities, against head and neck squamous cell carcinoma (HNSCC). Carfilzomib and oprozomib potently inhibit HNSCC cell survival and the growth of HNSCC tumors. Both compounds promote upregulation of proapoptotic BIK and antiapoptotic MCL1, which serves to mediate and attenuate, respectively, the killing activities of these proteasome inhibitors. Both compounds also induce complete autophagic flux that is partially dependent on activation of the unfolded protein response (UPR) and upregulation of ATF4. Carfilzomib- and oprozomib-induced autophagy acts to promote HNSCC cell survival. Our study indicates that the therapeutic benefit of these promising proteasome inhibitors may be improved by inhibiting MCL1 expression or autophagy.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Autofagia/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ácidos Borônicos/uso terapêutico , Bortezomib , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Modelos Biológicos , Oligopeptídeos/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Pirazinas/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço
12.
Mol Cancer Ther ; 11(6): 1236-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491800

RESUMO

G-protein-coupled receptors (GPCR) activate the epidermal growth factor receptor (EGFR) and mediate EGFR-independent signaling pathways to promote the growth of a variety of cancers, including head and neck squamous cell carcinoma (HNSCC). Identification of the common signaling mechanisms involved in GPCR-induced EGFR-dependent and EGFR-independent processes will facilitate the development of more therapeutic strategies. In this study, we hypothesized that phosphoinositide-dependent kinase 1 (PDK1) contributes to GPCR-EGFR cross-talk and signaling in the absence of EGFR and suggests that inhibition of the PDK1 pathway may be effective in the treatment of HNSCC. The contribution of PDK1 to the EGFR-dependent and EGFR-independent signaling in HNSCC was determined using RNA interference, a kinase-dead mutant, and pharmacologic inhibition. In vivo xenografts studies were also carried out to determine the efficacy of targeting PDK1 alone or in combination with the U.S. Food and Drug Administration-approved EGFR inhibitor cetuximab. PDK1 contributed to both GPCR-induced EGFR activation and cell growth. PDK1 also mediated activation of p70S6K in the absence of EGFR. Blockade of PDK1 with a small molecule inhibitor (AR-12) abrogated HNSCC growth, induced apoptosis, and enhanced the antiproliferative effects of EGFR tyrosine kinase inhibitors in vitro. HNSCC xenografts expressing kinase-dead PDK1 showed increased sensitivity to cetuximab compared with vector-transfected controls. Administration of AR-12 substantially decreased HNSCC tumor growth in vivo. These cumulative results show that PDK1 is a common signaling intermediate in GPCR-EGFR cross-talk and EGFR-independent signaling, and in which targeting the PDK1 pathway may represent a rational therapeutic strategy to enhance clinical responses to EGFR inhibitors in HNSCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Anticorpos Monoclonais Humanizados/uso terapêutico , Apoptose , Carcinoma de Células Escamosas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/enzimologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
13.
Clin Cancer Res ; 18(20): 5639-49, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22929803

RESUMO

PURPOSE: Carfilzomib is a selective, irreversible inhibitor of the chymotrypsin-like activity of the proteasome and is undergoing clinical evaluation in myeloma. ONX 0912 (oprozomib) is an orally bioavailable derivative. The activities of carfilzomib and ONX 0912 against solid tumor malignancies are less well understood. We investigated the impact and mechanisms of action of carfilzomib and ONX 0912 in preclinical models of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN: The effects of carfilzomib and ONX 0912 on HNSCC cell survival and xenograft tumor growth were evaluated. The impact and mechanisms of both agents on apoptosis and autophagy induction were also investigated. The contribution of the unfolded protein response (UPR) to autophagy induction and the role of autophagy in attenuating HNSCC cell death were determined. RESULTS: Carfilzomib and ONX 0912 potently induced apoptosis in HNSCC cell lines via upregulation of pro-apoptotic Bik. Upregulation of Mcl-1 by these agents served to dampen their efficacies. Carfilzomib and ONX 0912 also induced autophagy, mediated, in part, by activation of the UPR pathway involving upregulation of ATF4 transcription factor. Autophagy induction served a prosurvival role. Oral administration of ONX 0912 inhibited the growth of HNSCC xenograft tumors in a dose-dependent manner. CONCLUSIONS: These results show that carfilzomib and ONX 0912 are potently active against HNSCC cells, and the activities of these agents can be enhanced via suppression of Mcl-1 or inhibition of autophagy. Oral ONX 0912 exhibits in vivo activity against HNSCC tumors and may represent a useful therapeutic agent for this malignancy.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias de Células Escamosas , Oligopeptídeos/administração & dosagem , Animais , Antinematódeos/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias de Células Escamosas/tratamento farmacológico , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transplante Heterólogo , Resposta a Proteínas não Dobradas
14.
Cancer Discov ; 2(8): 694-705, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22719020

RESUMO

UNLABELLED: Despite evidence implicating transcription factors, including STAT3, in oncogenesis, these proteins have been regarded as "undruggable." We developed a decoy targeting STAT3 and conducted a phase 0 trial. Expression levels of STAT3 target genes were decreased in head and neck cancers following injection with the STAT3 decoy compared with tumors receiving saline control. Decoys have not been amenable to systemic administration due to instability. To overcome this barrier, we linked the oligonucleotide strands using hexaethylene glycol spacers. This cyclic STAT3 decoy bound with high affinity to STAT3 protein, reduced cellular viability, and suppressed STAT3 target gene expression in cancer cells. Intravenous injection of the cyclic STAT3 decoy inhibited xenograft growth and downregulated STAT3 target genes in the tumors. These results provide the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development. SIGNIFICANCE: This is the fi rst study of a STAT3-selective inhibitor in humans and the fi rst evidence that a transcription factor decoy can be modifi ed to enable systemic delivery. These findings have therapeutic implications beyond STAT3 to other "undruggable" targets in human cancers.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Fator de Transcrição STAT3/genética , Animais , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Injeções Intralesionais , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Distribuição Aleatória , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Prev Res (Phila) ; 4(2): 230-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21163936

RESUMO

Chemoprevention of head and neck squamous cell carcinoma (HNSCC), a disease associated with high mortality rates and frequent occurrence of second primary tumor (SPT), is an important clinical goal. The epidermal growth factor receptor (EGFR)-signal transducer and activator of transcription (STAT)-3 signaling pathway is known to play a key role in HNSCC growth, survival, and prognosis, thereby serving as a potential therapeutic target in the treatment of HNSCC. In the current study, the 4-nitroquinoline-1-oxide (4-NQO)-induced murine model of oral carcinogenesis was utilized to investigate the chemopreventive activities of compounds that target the EGFR-STAT3 signaling pathway. This model mimics the process of oral carcinogenesis in humans. The drugs under investigation included erlotinib, a small molecule inhibitor of the EGFR, and guggulipid, the extract of an Ayurvedic medicinal plant, which contains guggulsterone, a compound known to inhibit STAT3. Dietary administration of guggulipid failed to confer protection against oral carcinogenesis. On the other hand, the mice placed on erlotinib-supplemented diet exhibited a 69% decrease (P < 0.001) in incidence of preneoplastic and neoplastic lesions compared with mice on the control diet. Immunostaining of dysplastic lesions demonstrated modest decreases in STAT3 levels, with both drug treatments, that were not statistically significant. The results of the present study provide the basis for exploring the efficacy of erlotinib for prevention of HNSCC in a clinical setting.


Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Neoplasias Bucais/prevenção & controle , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , 4-Nitroquinolina-1-Óxido/toxicidade , Ração Animal , Animais , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Commiphora , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Feminino , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos CBA , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Extratos Vegetais/administração & dosagem , Gomas Vegetais/administração & dosagem , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa