Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 12(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35888051

RESUMO

Microalgal biomass and metabolites can be used as a renewable source of nutrition, pharmaceuticals and energy to maintain or improve the quality of human life. Microalgae's high volumetric productivity and low impact on the environment make them a promising raw material in terms of both ecology and economics. To optimize biotechnological processes with microalgae, improving the productivity and robustness of the cell factories is a major step towards economically viable bioprocesses. This review provides an overview of random mutagenesis techniques that are applied to microalgal cell factories, with a particular focus on physical and chemical mutagens, mutagenesis conditions and mutant characteristics.

2.
Sci Total Environ ; 851(Pt 2): 158160, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988601

RESUMO

Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S. commune, P. ostreatus, L. tigrinus) and soil-inhabiting fungi (L. naucinus) with Eu(III). In addition to determining the Eu(III) complexes in the sorption solution, the formed Eu(III) fungal species were characterized using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, chemical microscopy in combination with the time-resolved laser-induced fluorescence spectroscopy. Our data show that S. commune exhibited significantly higher Eu(III) binding capacity in comparison to the other fungi. Depending on fungal strain, the metal was immobilized on the cell surface, in the cell membranes, and within the membranes of various organelles, or in the cytoplasm in some cases. During the bioassociation process two different Eu(III) fungal species were formed in all investigated fungal strain. The phosphate groups of organic ligands were identified as being important functional groups to bind Eu(III) and thus immobilize the metal in the fungal matrix. The information obtained contributes to a better understanding of the role of fungi in migration, removal or retention mechanisms of rare earth elements and trivalent actinides in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Európio/química , Ligantes , Elementos da Série Actinoide/química , Espectrometria de Fluorescência , Micélio , Fosfatos , Solo
3.
J Hazard Mater ; 411: 125068, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454568

RESUMO

After the Chernobyl and Fukushima incidents it has become clear that fungi can take up and accumulate large quantities of radionuclides and heavy metals, but the underlying processes are not well understood yet. For this study, the molecular interactions of uranium(VI) with the white-rot fungi, Schizophyllum commune and Pleurotus ostreatus, and the soil-living fungus, Leucoagaricus naucinus, were investigated. First, the uranium concentration in the biomass was determined by time-dependent bioassociation experiments. To characterize the molecular interactions, uranium was localized in the biomass by transmission electron microscopy analysis. Second, the formed uranyl complexes in both biomass and supernatant were determined by fluorescence spectroscopy. Additionally, possible bioligands in the supernatant were identified. The results show that the discernible interactions between metals and fungi are similar, namely biosorption, accumulation, and subsequent crystallization. But at the same time, the underlying biochemical mechanisms are different and specific to the fungal species. In addition, Schizophyllum commune was found to be the only fungus that, under the chosen experimental conditions, released tryptophan and other indole derivatives in the presence of uranium(VI) as determined by nuclear magnetic resonance spectroscopy. These released substances most likely act as messenger molecules rather than serving the direct detoxification of uranium(VI).


Assuntos
Pleurotus , Urânio , Agaricales , Solo , Espectrometria de Fluorescência , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa