Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 13(3)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39051331

RESUMO

Natural killer (NK) cells play an important role in the surveillance of viral infections and cancer. NK cell antibody-dependent cellular cytotoxicity (ADCC) and direct cytotoxicity are mediated by the recognition of antibody-coated target cells through the Fc gamma receptor IIIA (FcγRIIIa/CD16) and by ligands of activating/inhibitory NK receptors, respectively. Allelic variants of the FCGR3A gene include the high-affinity single-nucleotide polymorphism (SNP) rs396991 (V176F), which is associated with the efficacy of monoclonal antibody (mAb) therapies, and the SNP rs10127939 (L66H/R). The contribution of FCGR3A SNPs to NK cell effector functions remains controversial; therefore, we generated a panel of eight NK-92 cell lines expressing specific combinations of these SNPs and tested their cytotoxicities. NK-92 cells were stably transfected with plasmids containing different combinations of FCGR3A SNPs. Messenger RNA and FcγRIIIa/CD16 cell surface expressions were detected using new generation sequencing (NGS) and flow cytometry, respectively. All FcγRIIIa/CD16-transfected NK-92 cell lines exhibited robust ADCC against three different target cell lines with minor differences. In addition, enhanced direct NK cytotoxicity against K562 target cells was observed, suggesting a mechanistic role of FcγRIIIa/CD16 in direct NK cytotoxicity. In conclusion, we generated eight FcγRIIIa/CD16-transfected NK-92 cell lines carrying different combinations of two of the most studied FCGR3A SNPs, representing the major genotypes described in the European population. The functional characterization of these cell lines revealed differences in ADCC and direct NK cytotoxicity that may have implications for the design of adoptive cancer immunotherapies using NK cells and tumor antigen-directed mAbs.

2.
J Leukoc Biol ; 108(4): 1409-1423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32620047

RESUMO

NK cell-mediated Ab-dependent cellular cytotoxicity (ADCC) is increasingly recognized to play an important role in cancer immunotherapy, transplant rejection, and autoimmunity. However, several aspects of the molecular interactions of IgG subclasses with the Fc-gamma receptor IIIA (FcγRIIIA)/CD16a expressed on NK cells remain unknown. The aim of the current study was to further analyze the role of IgG subclasses and FCGR3A V158F single nucleotide polymorphism (SNP) on Ca2+ signaling and NK cell-mediated ADCC against Daudi target cells in vitro. NK cells were isolated from donors with different FCGR3A SNP. The affinity of rituximab IgG subclasses to CD20 expressed on Daudi cells showed similar dissociation constant as tested by flow cytometry. Induction of Ca2+ signaling, degranulation, intracellular cytokine production, and ADCC was demonstrated for IgG1 and IgG3, to a lesser degree also for IgG4, but not for IgG2. Compared to NK cells carrying the low-affinity (FF) variant for the FCGR3A V158F SNP, binding of IgG1 and IgG3 to NK cells carrying the high-affinity (VV) and VF SNP variants was two- to threefold higher. Variations of FCGR3A SNP among the eight tested donors (1 VV, 3FF, and 4VF) revealed no significant differences of Ca2+ signaling and degranulation; however, ADCC was somewhat weaker in donors with the low-affinity FF variation. In conclusion, this is the first study correlating Ca2+ signaling and NK cell-mediated ADCC triggered by the four IgG subclasses with the FCGR3A V158F SNP. Our findings indicate important differences in the interactions of IgG subclasses with FcγRIIIA/CD16a but no major impact of FCGR3A SNP and may therefore help to better correlate the functional properties of particular engineered therapeutic antibodies in vitro with individual differences of their clinical efficacy.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/farmacologia , Sinalização do Cálcio , Imunoglobulina G/farmacologia , Células Matadoras Naturais/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de IgG , Rituximab/farmacologia , Antineoplásicos Imunológicos/farmacocinética , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Linhagem Celular Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de IgG/genética , Receptores de IgG/imunologia
3.
Sci Rep ; 10(1): 20709, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244063

RESUMO

Antibiotic resistance poses an increasing threat to global health. To tackle this problem, the identification of principal reservoirs of antibiotic resistance genes (ARGs) plus an understanding of drivers for their evolutionary selection are important. During a PCR-based screen of ARGs associated with integrons in saliva-derived metagenomic DNA of healthy human volunteers, two novel variants of genes encoding a D-alanine-D-alanine ligase (ddl6 and ddl7) located within gene cassettes in the first position of a reverse integron were identified. Treponema denticola was identified as the likely host of the ddl cassettes. Both ddl6 and ddl7 conferred high level resistance to D-cycloserine when expressed in Escherichia coli with ddl7 conferring four-fold higher resistance to D-cycloserine compared to ddl6. A SNP was found to be responsible for this difference in resistance phenotype between the two ddl variants. Molecular dynamics simulations were used to explain the mechanism of this phenotypic change at the atomic scale. A hypothesis for the evolutionary selection of ddl containing integron gene cassettes is proposed, based on molecular docking of plant metabolites within the ATP and D-cycloserine binding pockets of Ddl.


Assuntos
Ciclosserina/farmacologia , Farmacorresistência Bacteriana/genética , Integrons/genética , Peptídeo Sintases/genética , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Treponema denticola/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa