Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 97(4): 1889-1900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306047

RESUMO

Background: Alzheimer's disease (AD) is the most common cause of dementia and remains incurable. This age-related neurodegenerative disease is characterized by an early decline in episodic and spatial memory associated with progressive disruption of the hippocampal functioning. Recent clinical evidence suggests that impairment of the spatial pattern separation (SPS) function, which enables the encoding and storage of episodic spatial information, may be an indicator of the early stages of AD. Objective: The aim of our study was to characterize SPS performance at a prodromal stage in 5xFAD transgenic mouse model of AD. Methods: Behavioral performance of male wild-type (WT) and 5xFAD mice (n = 14 per group) was assessed from the age of 4 months in two validated paradigms of SPS function either based on spontaneous exploration of objects or on the use of a touchscreen system. Results: Compared with age-matched WT littermates, a mild deficit in SPS function was observed in the object recognition task in 5xFAD mice, whereas both groups showed similar performance in the touchscreen-based task. These results were observed in the absence of changes in locomotor activity or anxiety-like behavior that could have interfered with the tasks assessing SPS function. Conclusions: Our results indicate an early vulnerability of the SPS function in 5xFAD mice in the paradigm based on spontaneous exploration of objects. Our work opens up the possibility of examining the early neurobiological processes involved in the decline of episodic memory and may help to propose new therapeutic strategies in the context of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Masculino , Animais , Doença de Alzheimer/complicações , Doenças Neurodegenerativas/complicações , Camundongos Transgênicos , Hipocampo , Modelos Animais de Doenças
2.
Neurosci Biobehav Rev ; 157: 105526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176632

RESUMO

Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.


Assuntos
Esquizofrenia , Animais , Esquizofrenia/genética , Modelos Animais de Doenças , Fatores de Risco
3.
Exp Gerontol ; 189: 112399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484906

RESUMO

OBJECTIVE: Aging is a natural process associated with a decline in cognition. However, the mediating effect of physical function and circulating myokines on this relationship has yet to be fully clarified. This study investigated how muscle strength and circulating insulin-like growth factor-1 (IGF-1) levels mediate the relationship between age and cognitive functions. SUBJECTS AND METHODS: A total of 1255 participants aged 25-74 years included in the Midlife in the United States II study were retrospectively analyzed. In this cross-sectional analysis, we applied a serial mediation model to explore the mediating effects of muscle strength and circulating IGF-1 levels on the relationship between age and cognitive functions. We included potential confounding factors related to sociodemographics, lifestyle, and health status as covariates in the model. RESULTS: The results showed that aging had both direct and indirect effects on cognition. As predicted, muscle strength and IGF-1 levels mediated the relationship between age and specific cognitive functions. In addition, mediation analyses indicated that the association between aging and cognitive flexibility, immediate and delayed memory, and inductive reasoning were partially mediated by muscle strength and IGF-1 levels in a serial manner. CONCLUSIONS: Our study demonstrated the serial multiple mediation roles of muscle strength and IGF-1 levels on the relationship between age and specific cognitive functions. Further longitudinal research should be performed to confirm the serial mediation results.


Assuntos
Envelhecimento , Fator de Crescimento Insulin-Like I , Humanos , Envelhecimento/fisiologia , Cognição/fisiologia , Estudos Transversais , Fator de Crescimento Insulin-Like I/análise , Força Muscular , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Idoso
4.
Cancer Imaging ; 24(1): 95, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026377

RESUMO

BACKGROUND: Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. METHODS: Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. RESULTS: DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. CONCLUSIONS: Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.


Assuntos
Lesões Encefálicas , Animais , Ratos , Masculino , Lesões Encefálicas/etiologia , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Encéfalo/efeitos da radiação , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/etiologia , Imageamento por Ressonância Magnética Multiparamétrica/métodos
5.
Aging Dis ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38377030

RESUMO

Physical Activity (PA) is often associated with better overall health status, especially in older adults. Numerous pieces of evidence indicate that PA would be more beneficial when applied in conjunction with Cognitive Training (CT) either simultaneously (i.e., in Dual-Task [DT]) or sequentially. Nonetheless, the underlying mechanisms of such benefits remain elusive. To help delve deeper into their understanding, we developed a cognitive-motor DT paradigm in young adult mice and subsequently tested its effect in old age. Three groups of young adults C57BL/6J mice (3.5 months of age; n=10/group) were required. They were given cognitive tasks, either alone (Control) or in combination with PA which was administered either sequentially (SeqT group) or simultaneously (DT group). Mice were trained in a touchscreen chamber: first on a Visual Discrimination (VD) learning task, then on its Reversal (RVD) which assesses cognitive flexibility alongside procedural learning. PA was given through a homemade treadmill, designed to fit in the touchscreen chambers and set at 9 m/min. Fourteen months later, we further evaluated the effects of PA administered in both DT and SeqT groups, on the performance of the now 19-month-old mice. When compared to SeqT and control groups, DT mice significantly displayed better procedural learning in both VD and RVD tasks as young adults. In the RVD task, this enhanced performance was associated with both poorer inhibition and motor performance. Finally, in 19-month-old mice, both DT and SeqT mice displayed better motor and cognitive performances than control mice. This new cognitive-motor DT paradigm in mice yields an interesting framework that should be useful for adapting DT training in aging, including providing knowledge on the neurobiological correlates, to get the most out of its benefits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa