Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34143954

RESUMO

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Assuntos
Bifidobacterium/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/microbiologia , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Aleitamento Materno , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Fezes/química , Fezes/microbiologia , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indóis/metabolismo , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/imunologia , Metaboloma , Leite Humano/química , Oligossacarídeos/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Água
2.
Cell ; 161(1): 36-48, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815983

RESUMO

Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition.


Assuntos
Desenvolvimento Infantil , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Criança , Fenômenos Fisiológicos da Nutrição Infantil , Feminino , Humanos , Troca Materno-Fetal , Gravidez
3.
Pediatr Res ; 91(3): 627-636, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33762689

RESUMO

BACKGROUND: Recent studies have reported a dysfunctional gut microbiome in breastfed infants. Probiotics have been used in an attempt to restore the gut microbiome; however, colonization has been transient, inconsistent among individuals, or has not positively impacted the host's gut. METHODS: This is a 2-year follow-up study to a randomized controlled trial wherein 7-day-old infants received 1.8 × 1010 colony-forming unit Bifidobacterium longum subsp. infantis (B. infantis) EVC001 (EVC) daily for 21 days or breast milk alone (unsupplemented (UNS)). In the follow-up study, mothers (n = 48) collected infant stool at 4, 6, 8, 10, and 12 months postnatal and completed the health-diet questionnaires. RESULTS: Fecal B. infantis was 2.5-3.5 log units higher at 6-12 months in the EVC group compared with the UNS group (P < 0.01) and this relationship strengthened with the exclusion of infants who consumed infant formula and antibiotics. Infants in the EVC group had significantly higher Bifidobacteriaceae and lower Bacteroidaceae and Lachnospiraceae (P < 0.05). There were no differences in any health conditions between the two groups. CONCLUSIONS: Probiotic supplementation with B. infantis within the first month postnatal, in combination with breast milk, resulted in stable colonization that persisted until at least 1 year postnatal. IMPACT: A dysfunctional gut microbiome in breastfed infants is common in resource-rich nations and associated with an increased risk of immune diseases. Probiotics only transiently exist in the gut without persistent colonization or altering the gut microbiome. This is the first study to show that early probiotic supplementation with B. infantis with breast milk results in stable colonization of B. infantis and improvements to the gut microbiome 1 year postnatal. This study addresses a key gap in the literature whereby probiotics can restore the gut microbiome if biologically selected microorganisms are matched with their specific food in an open ecological niche.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bifidobacterium longum subspecies infantis , Aleitamento Materno , Fezes/microbiologia , Feminino , Seguimentos , Humanos , Lactente , Leite Humano
4.
Bioinformatics ; 35(13): 2318-2319, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475995

RESUMO

SUMMARY: The removal of human genomic reads from shotgun metagenomic sequencing is a critical step in protecting subject privacy. Freely available tools addressing this issue require advanced programing knowledge or are limited by analytical time and data load due to their server-based nature. Here, we compared the most cited tools for host-DNA removal using synthetic and real metagenomic datasets. Then, we integrated the most efficient pipeline in a graphical user interface to make these tools available without command line use. This interface, GenCoF, rapidly removes human genome contaminants from metagenomic datasets. Additionally, the tool offers quality-filtering, data reduction and interactive modification of any parameter in order to customize the analysis. GenCoF offers both quality and host-associated filtering in a non-commercial, freely available tool in a local, interactive and easy-to-use interface. AVAILABILITY AND IMPLEMENTATION: GenCoF is freely available (under a GPL license) for Mac OS and Linux at https://github.com/MattCzajkowski/GenCoF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Humano , Software , Humanos , Metagenoma , Privacidade
5.
Pediatr Res ; 86(6): 749-757, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31443102

RESUMO

BACKGROUND: Infant gut dysbiosis, often associated with low abundance of bifidobacteria, is linked to impaired immune development and inflammation-a risk factor for increased incidence of several childhood diseases. We investigated the impact of B. infantis EVC001 colonization on enteric inflammation in a subset of exclusively breastfed term infants from a larger clinical study. METHODS: Stool samples (n = 120) were collected from infants randomly selected to receive either 1.8 × 1010 CFU B. infantis EVC001 daily for 21 days (EVC001) or breast milk alone (controls), starting at day 7 postnatal. The fecal microbiome was analyzed using 16S ribosomal RNA, proinflammatory cytokines using multiplexed immunoassay, and fecal calprotectin using ELISA at three time points: days 6 (Baseline), 40, and 60 postnatal. RESULTS: Fecal calprotectin concentration negatively correlated with Bifidobacterium abundance (P < 0.0001; ρ = -0.72), and proinflammatory cytokines correlated with Clostridiaceae and Enterobacteriaceae, yet negatively correlated with Bifidobacteriaceae abundance. Proinflammatory cytokines were significantly lower in EVC001-fed infants on days 40 and 60 postnatally compared to baseline and compared to control infants. CONCLUSION: Our findings indicate that gut dysbiosis (absence of B. infantis) is associated with increased intestinal inflammation. Early addition of EVC001 to diet represents a novel strategy to prevent enteric inflammation during a critical developmental phase.


Assuntos
Bifidobacterium longum subspecies infantis/crescimento & desenvolvimento , Aleitamento Materno , Enterite/prevenção & controle , Citocinas/metabolismo , Enterite/metabolismo , Enterite/microbiologia , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Complexo Antígeno L1 Leucocitário/análise , Masculino , Estudos Prospectivos
6.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389535

RESUMO

The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs.IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We developed and applied an experimental approach to determine host adaptation of L. reuteri to different hosts. Our findings confirmed adaptation to rodents and provided evidence of adaptation to poultry, suggesting that L. reuteri evolved via natural selection in different hosts. By complementing phylogenetic analyses with experimental evidence, this study provides novel information about the mechanisms driving host-microbe coevolution with vertebrates and serve as a basis to inform the application of L. reuteri as a probiotic for different host species.


Assuntos
Limosilactobacillus reuteri/fisiologia , Vertebrados/microbiologia , Adaptação Biológica , Animais , Evolução Biológica , Galinhas/microbiologia , Trato Gastrointestinal/microbiologia , Especificidade de Hospedeiro , Humanos/microbiologia , Limosilactobacillus reuteri/classificação , Limosilactobacillus reuteri/genética , Camundongos/microbiologia , Filogenia , Suínos/microbiologia
7.
Crit Rev Food Sci Nutr ; 57(15): 3313-3331, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26713355

RESUMO

Proteins are not equally digestible-their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources, and processing methods must be tailored to the consumer's digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health.


Assuntos
Digestão/fisiologia , Manipulação de Alimentos/métodos , Proteínas/metabolismo , Ração Animal , Dieta , Fezes , Fermentação , Humanos
8.
Environ Microbiol ; 18(7): 2172-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26530032

RESUMO

Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts.


Assuntos
Ácidos/metabolismo , Trato Gastrointestinal/microbiologia , Limosilactobacillus reuteri/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crescimento & desenvolvimento , Camundongos , Urease/genética , Urease/metabolismo
9.
Appl Environ Microbiol ; 82(12): 3622-3630, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084007

RESUMO

UNLABELLED: Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-ß-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides. IMPORTANCE: It has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugated N-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth of B. infantis, which is a key infant gut microbe. The selectivity of consumption of individual N-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip-quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal that B. infantis can consume the range of glycan structures released from whey protein concentrate.


Assuntos
Bifidobacterium/enzimologia , Bifidobacterium/metabolismo , Glicoproteínas/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Leite/metabolismo , Oligossacarídeos/metabolismo , Animais , Bifidobacterium/crescimento & desenvolvimento , Humanos , Lactente
10.
PLoS Genet ; 9(12): e1004057, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385934

RESUMO

Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain's host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway) completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process.


Assuntos
Biofilmes/crescimento & desenvolvimento , Especificidade de Hospedeiro/genética , Limosilactobacillus reuteri/genética , Simbiose/genética , Adesinas Bacterianas/metabolismo , Animais , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Genômica , Limosilactobacillus reuteri/crescimento & desenvolvimento , Camundongos , Análise de Sequência de DNA , Vertebrados/genética , Vertebrados/microbiologia
11.
Appl Environ Microbiol ; 81(7): 2455-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616794

RESUMO

One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract.


Assuntos
Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Seleção Genética , Simbióticos , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fezes/microbiologia , Humanos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
12.
Malar J ; 13: 94, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24620929

RESUMO

BACKGROUND: In places where malaria transmission is unstable or is transmitted under hypoendemic conditions, there are periods where limited foci of cases still occur and people become infected. These residual "hot spots" are likely reservoirs of the parasite population and so are fundamental to the seasonal spread and decline of malaria. It is, therefore, important to understand the ecological conditions that permit vector mosquitoes to survive and forage in these specific areas. Features such as local waterways and vegetation, as well as local ecology, particularly nocturnal temperature, humidity, and vegetative sustainability, are important for modeling local mosquito behavior. Vegetation around a homestead likely provides refuge for outdoor resting of these insects and may be a risk factor for malaria transmission. Analysis of this vegetation can be done using satellite information and mapping programs, such as Google Earth, but manual quantification is difficult and can be tedious and subjective. A more objective method is required. METHODS: Vegetation cover in the environment is reasonably static, particularly in and around homesteads. In order to evaluate and enumerate such information, ImageJ, an image processing software, was used to analyse Google Earth satellite imagery. The number of plants, total amount of vegetation around a homestead and its percentage of the total area were calculated and related to homesteads where cases of malaria were recorded. RESULTS: Preliminary results were obtained from a series of field trials carried out in South East Zambia in the Choma and Namwala districts from a base at the Macha District Hospital. CONCLUSIONS: This technique is objective, clear and simple to manipulate and has potential application to determine the role that vegetation proximal to houses may play in affecting mosquito behaviour, foraging and subsequent malaria incidence.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Malária/transmissão , Plantas , Animais , Culicidae/crescimento & desenvolvimento , Humanos , Fatores de Risco , Astronave , Zâmbia
13.
PLoS Genet ; 7(2): e1001314, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379339

RESUMO

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.


Assuntos
Evolução Molecular , Trato Gastrointestinal/microbiologia , Especificidade de Hospedeiro/genética , Limosilactobacillus reuteri/genética , Simbiose/genética , Vertebrados/microbiologia , Animais , Aptidão Genética , Genoma Bacteriano/genética , Genômica , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Roedores/microbiologia , Especificidade da Espécie
14.
Front Pediatr ; 12: 1421051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915873

RESUMO

Background: The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods: In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results: Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion: This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.

15.
Front Nutr ; 9: 988144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091255

RESUMO

Non-nutritive sweeteners (NNS) are broadly incorporated into foods, especially those representing a growing share of the beverage market. NNS are viewed as a noncaloric and desirable alternative to sugar-based sweeteners and are thought to contribute to reducing overall caloric intake. While these compounds have been studied extensively and have long been considered inert, new research has presented a different view and raises new questions about the effects of NNS on human physiology. Namely, the influence on glucose responses, the gastrointestinal epithelium, and the gut microbiome. As the gut microbiome is now recognized as a major mediator of human health and perturbations to this community are generally associated with negative health trajectories or overt disease, interactions between NNS and the gut microbiome are of increasing interest to clinicians and researchers. Several NNS compounds are now hypothesized to affect human physiology by modulating the gut microbiome, though the mechanism for this action remains unclear. The purpose of this review is to discuss the history and current knowledge of NNS, their reported utility and effects on host physiology and the gut microbiome, and describes a model for investigating the underlying mechanism behind reported effects of NNS on the gut microbiome.

16.
Nutrients ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35276854

RESUMO

Necrotizing enterocolitis (NEC) is a disease mainly of preterm infants with a 30-50% mortality rate and long-term morbidities for survivors. Treatment strategies are limited and have not improved in decades, prompting research into prevention strategies, particularly with probiotics. Recent work with the probiotic B. infantis EVC001 suggests that this organism may generate a more appropriate microbiome for preterm infants who generally have inappropriate gut colonization and inflammation, both risk factors for NEC. Experimental NEC involving Paneth cell disruption in combination with bacterial dysbiosis or formula feeding was induced in P14-16 C57Bl/6 mice with or without gavaged B. infantis. Following completion of the model, serum, small intestinal tissue, the cecum, and colon were harvested to examine inflammatory cytokines, injury, and the microbiome, respectively. EVC001 treatment significantly decreased NEC in a bacterial dysbiosis dependent model, but this decrease was model-dependent. In the NEC model dependent on formula feeding, no difference in injury was observed, but trending to significant differences was observed in serum cytokines. EVC001 also improved wound closure at six and twelve hours compared to the sham control in intestinal epithelial monolayers. These findings suggest that B. infantis EVC001 can prevent experimental NEC through anti-inflammatory and epithelial barrier restoration properties.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Animais , Bifidobacterium longum subspecies infantis , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Pediatr ; 10: 893059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081629

RESUMO

Necrotizing enterocolitis (NEC) is a leading cause of premature newborn morbidity and mortality. The clinical features of NEC consistently include prematurity, gut dysbiosis and enteral inflammation, yet the pathogenesis remains obscure. Herein we combine metagenomics and targeted metabolomics, with functional in vivo and in vitro assessment, to define a novel molecular mechanism of NEC. One thousand six hundred and forty seven publicly available metagenomics datasets were analyzed (NEC = 245; healthy = 1,402) using artificial intelligence methodologies. Targeted metabolomic profiling was used to quantify the concentration of specified fecal metabolites at NEC onset (n = 8), during recovery (n = 6), and in age matched controls (n = 10). Toxicity assays of discovered metabolites were performed in vivo in mice and in vitro using human intestinal epithelial cells. Metagenomic and targeted metabolomic analyses revealed significant differences in pyruvate fermentation pathways and associated intermediates. Notably, the short chain fatty acid formate was elevated in the stool of NEC patients at disease onset (P = 0.005) dissipated during recovery (P = 0.02) and positively correlated with degree of intestinal injury (r 2 = 0.86). In vitro, formate caused enterocyte cytotoxicity in human cells through necroptosis (P < 0.01). In vivo, luminal formate caused significant dose and development dependent NEC-like injury in newborn mice. Enterobacter cloacae and Klebsiella pneumoniae were the most discriminatory taxa related to NEC dysbiosis and increased formate production. Together, these data suggest a novel biochemical mechanism of NEC through the microbial production of formate. Clinical efforts to prevent NEC should focus on reducing the functional consequences of newborn gut dysbiosis associated metabolic pathways.

18.
Sci Transl Med ; 14(640): eabk1107, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417188

RESUMO

Disrupted development of the gut microbiota is a contributing cause of childhood malnutrition. Bifidobacterium longum subspecies infantis is a prominent early colonizer of the infant gut that consumes human milk oligosaccharides (HMOs). We found that the absolute abundance of Bifidobacterium infantis is lower in 3- to 24-month-old Bangladeshi infants with severe acute malnutrition (SAM) compared to their healthy age-matched counterparts. A single-blind, placebo-controlled trial (SYNERGIE) was conducted in 2- to 6-month-old Bangladeshi infants with SAM. A commercial U.S. donor-derived B. infantis strain (EVC001) was administered daily with or without the HMO lacto-N-neotetraose for 28 days. This intervention increased fecal B. infantis abundance in infants with SAM, although to levels still 10- to 100-fold lower than in untreated healthy controls. EVC001 treatment promoted weight gain that was associated with reduced intestinal inflammation markers in infants with SAM. We cultured fecal B. infantis strains from Bangladeshi infants and colonized gnotobiotic mice with these cultured strains. The gnotobiotic mice were fed a diet representative of that consumed by 6-month-old Bangladeshi infants, with or without HMO supplementation. One B. infantis strain, Bg_2D9, expressing two gene clusters involved in uptake and utilization of N-glycans and plant-derived polysaccharides, exhibited superior fitness over EVC001. The fitness advantage of Bg_2D9 was confirmed in a gnotobiotic mouse model of mother-to-infant gut microbiota transmission where dams received a pretreatment fecal community from a SAM infant in the SYNERGIE trial. Whether Bg_2D9 is superior to EVC001 for treating malnourished infants who consume a diet with limited breastmilk requires further clinical testing.


Assuntos
Bifidobacterium longum subspecies infantis , Desnutrição Aguda Grave , Animais , Bifidobacterium , Fezes/microbiologia , Humanos , Lactente , Camundongos , Leite Humano , Método Simples-Cego , Aumento de Peso
19.
Front Nutr ; 8: 651721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235166

RESUMO

Colostrum is the first milk produced post-partum by mammals and is compositionally distinct from mature milk. Bovine colostrum has a long history of consumption by humans, and there have been a number of studies investigating its potential for applications in human nutrition and health. Extensive characterization of the constituent fractions has identified a wealth of potentially bioactive molecules, their potential for shaping neonatal development, and the potential for their application beyond the neonatal period. Proteins, fats, glycans, minerals, and vitamins are abundant in colostrum, and advances in dairy processing technologies have enabled the advancement of bovine colostrum from relative limitations of a fresh and unprocessed food to a variety of potential applications. In these forms, clinical studies have examined bovine colostrum as having the substantial potential to improve human health. This review discusses the macro-and micronutrient composition of colostrum as well as describing well-characterized bioactives found in bovine colostrum and their potential for human health. Current gaps in knowledge are also identified and future directions are considered in order to elevate the potential for bovine colostrum as a component of a healthy diet for a variety of relevant human populations.

20.
Front Nutr ; 8: 646275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898500

RESUMO

Human milk is the optimal source of infant nutrition. Among many other health benefits, human milk can stimulate the development of a Bifidobacterium-rich microbiome through human milk oligosaccharides (HMOs). In recent years, the development of novel formulas has placed particular focus on incorporating some of the beneficial functional properties of human milk. These include adding specific glycans aimed to selectively stimulate the growth of Bifidobacterium. However, the bifidogenicity of human milk remains unparalleled. Dietary N-glycans are carbohydrate structures conjugated to a wide variety of glycoproteins. These glycans have a remarkable structural similarity to HMOs and, when released, show a strong bifidogenic effect. This review discusses the biocatalytic potential of the endo-ß-N-acetylglucosaminidase enzyme (EndoBI-1) from Bifidobacterium longum subspecies infantis (B. infantis), in releasing N-glycans inherently present in infant formula as means to increase the bifidogenicity of infant formula. Finally, the potential implications for protein deglycosylation with EndoBI-1 in the development of value added, next-generation formulas are discussed from a technical perspective.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa