Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 135(1): 49-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28849371

RESUMO

In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Príons/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patologia , Detergentes/farmacologia , Modelos Animais de Doenças , Fixadores , Formaldeído , Células HEK293 , Humanos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Príons/administração & dosagem , Agregados Proteicos , Estabilidade Proteica/efeitos dos fármacos , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Aço Inoxidável , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Bioorg Med Chem ; 22(6): 1960-72, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530226

RESUMO

PURPOSE: Previous studies showed that lowering PrP(C) concomitantly reduced PrP(Sc) in the brains of mice inoculated with prions. We aimed to develop assays that measure PrP(C) on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrP(C) levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. METHODS: We utilized HTS ELISA assays to identify small molecules that lower PrP(C) levels by ≥30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. RESULTS: From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose-response (EC50) in both cell lines, only studies in T98G cells identified compounds that reduced PrP(C) without killing the cells. EC50 values from 32 hits ranged from 65 nM to 4.1 µM. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 µM, but only after intraperitoneal dosing. CONCLUSIONS: Our studies identified leads for future studies to determine which compounds might lower PrP(C) levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions.


Assuntos
Príons/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Encéfalo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Microscopia Confocal , Estrutura Molecular , Isoformas de Proteínas , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Propriedades de Superfície , Distribuição Tecidual , Células Tumorais Cultivadas
3.
Pharm Res ; 30(4): 932-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23417511

RESUMO

PURPOSE: To discover drugs lowering PrP(Sc) in prion-infected cultured neuronal cells that achieve high concentrations in brain to test in mouse models of prion disease and then treat people with these fatal diseases. METHODS: We tested 2-AMT analogs for EC50 and PK after a 40 mg/kg single dose and 40-210 mg/kg/day doses for 3 days. We calculated plasma and brain AUC, ratio of AUC/EC50 after dosing. We reasoned that compounds with high AUC/EC50 ratios should be good candidates going forward. RESULTS: We evaluated 27 2-AMTs in single-dose and 10 in 3-day PK studies, of which IND24 and IND81 were selected for testing in mouse models of prion disease. They had high concentrations in brain after oral dosing. Absolute bioavailability ranged from 27-40%. AUC/EC50 ratios after 3 days were >100 (total) and 48-113 (unbound). Stability in liver microsomes ranged from 30->60 min. Ring hydroxylated metabolites were observed in microsomes. Neither was a substrate for the MDR1 transporter. CONCLUSIONS: IND24 and IND81 are active in vitro and show high AUC/EC50 ratios (total and unbound) in plasma and brain. These will be evaluated in mouse models of prion disease.


Assuntos
Proteínas PrPSc/antagonistas & inibidores , Doenças Priônicas/tratamento farmacológico , Tiazóis/metabolismo , Tiazóis/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Área Sob a Curva , Disponibilidade Biológica , Encéfalo/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Proteínas PrPSc/metabolismo , Isoformas de Proteínas/metabolismo , Solubilidade , Tiazóis/química , Tiazóis/farmacologia
4.
JAMA Neurol ; 74(12): 1464-1472, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059326

RESUMO

Importance: Accumulation of the protein tau is a defining characteristic of several neurodegenerative diseases. Thorough assessment of transgenic (Tg) mouse lines that replicate this process is critical for establishing the models used for testing anti-tau therapeutics in vivo. Objective: To define a consistent mouse model of disease for use in future compound efficacy studies. Design, Setting, and Participants: In this time course study, cohorts of Tg and control mice were euthanized at defined intervals. Collected brains were bisected down the midline. One half was frozen and used to measure the tau prion content, while the other half was fixed for immunostaining with anti-tau antibodies. All mice were maintained at the Hunters Point Animal Facility at the University of California, San Francisco, and all experiments were performed at the Mission Bay Campus of the University of California, San Francisco. Study animals were PS19, homozygous and hemizygous Tg(MAPT*P301S), and B6/J mice. The study dates were August 9, 2010, to October 3, 2016. Main Outcomes and Measures: Tau prions were measured using a cell-based assay. Neuropathology was measured by determining the percentage area positive for immunostaining in defined brain regions. A separate cohort of mice was aged until each mouse developed neurological signs as determined by trained animal technicians to assess mortality. Results: A total of 1035 mice were used in this time course study. These included PS19 mice (51.2% [126 of 246] male and 48.8% [120 of 246] female), Tg(MAPT*P301S+/+) mice (52.3% [216 of 413] male, 43.8% [181 of 413] female, and 3.9% [16 of 413] undetermined), Tg(MAPT*P301S+/-) mice (51.8% [101 of 195] male and 48.2% [94 of 195] female), and B6/J mice (49.7% [90 of 181] male and 50.3% [91 of 181] female). While considerable interanimal variability in neuropathology, disease onset, and tau prion formation in the PS19 mice was observed, all 3 measures of disease were more uniform in the Tg(MAPT*P301S+/+) mice. Comparing tau prion formation in Tg(MAPT*P301S+/+) mice with B6/J controls, the 95% CIs for the 2 mouse lines diverged before age 5 weeks, and significant (P < .05) neuropathology in the hindbrain of 24-week-old mice was quantifiable. Conclusions and Relevance: The assessment of disease progression using 3 criteria showed that disease onset in PS19 mice is too variable to obtain reliable measurements for drug discovery research. However, the reproducibility of tau prion formation in young Tg(MAPT*P301S+/+) mice establishes a rapid assay for compound efficacy in vivo.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Príons/metabolismo , Tauopatias/genética , Proteínas tau/genética , Animais , Feminino , Hemizigoto , Homozigoto , Humanos , Cinética , Masculino , Camundongos Transgênicos , Mutação , Reprodutibilidade dos Testes , Tauopatias/metabolismo , Proteínas tau/metabolismo
5.
Mol Ther Nucleic Acids ; 1: e9, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23344724

RESUMO

Mice deficient for the cellular prion protein (PrP(C)) do not develop prion disease; accordingly, gene-based strategies to diminish PrP(C) expression are of interest. We synthesized a series of chemically modified antisense oligonucleotides (ASOs) targeted against mouse Prnp messenger RNA (mRNA) and identified those that were most effective in decreasing PrP(C) expression. Those ASOs were also evaluated in scrapie-infected cultured cells (ScN2a) for their efficacy in diminishing the levels of the disease-causing prion protein (PrP(Sc)). When the optimal ASO was infused intracerebrally into FVB mice over a 14-day period beginning 1 day after infection with the Rocky Mountain Laboratory (RML) strain of mouse prions, a prolongation of the incubation period of almost 2 months was observed. Whether ASOs can be used to develop an effective therapy for patients dying of Creutzfeldt-Jakob disease remains to be established.

6.
J Infect Dis ; 198(1): 81-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18505383

RESUMO

In chronic wasting disease (CWD) in cervids and in scrapie in sheep, prions appear to be transmitted horizontally. Oral exposure to prion-tainted blood, urine, saliva, and feces has been suggested as the mode of transmission of CWD and scrapie among herbivores susceptible to these prion diseases. To explore the transmission of prions through feces, uninoculated Syrian hamsters (SHas) were cohabitated with or exposed to the bedding of SHas orally infected with Sc237 prions. Incubation times of 140 days and a rate of prion infection of 80%-100% among exposed animals suggested transmission by feces, probably via coprophagy. We measured the disease-causing isoform of the prion protein (PrP(Sc)) in feces by use of the conformation-dependent immunoassay, and we titrated the irradiated feces intracerebrally in transgenic mice that overexpressed SHa prion protein (SHaPrP). Fecal samples collected from infected SHas in the first 7 days after oral challenge harbored 60 ng/g PrP(Sc) and prion titers of approximately 10(6.6) ID(50)/g. Excretion of infectious prions continued at lower levels throughout the asymptomatic phase of the incubation period, most likely by the shedding of prions from infected Peyer patches. Our findings suggest that horizontal transmission of disease among herbivores may occur through the consumption of feces or foodstuff tainted with prions from feces of CWD-infected cervids and scrapie-infected sheep.


Assuntos
Fezes/química , Doenças Priônicas/transmissão , Príons/isolamento & purificação , Animais , Western Blotting , Encéfalo/patologia , Cricetinae , Feminino , Mesocricetus , Camundongos , Príons/efeitos da radiação
7.
J Virol ; 80(1): 322-31, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16352557

RESUMO

Prompted by the discovery that prions become protease-sensitive after exposure to branched polyamine dendrimers in acetic acid (AcOH) (S. Supattapone, H. Wille, L. Uyechi, J. Safar, P. Tremblay, F. C. Szoka, F. E. Cohen, S. B. Prusiner, and M. R. Scott, J. Virol. 75:3453-3461, 2001), we investigated the inactivation of prions by sodium dodecyl sulfate (SDS) in weak acid. As judged by sensitivity to proteolytic digestion, the disease-causing prion protein (PrPSc) was denatured at room temperature by SDS at pH values of < or =4.5 or > or =10. Exposure of Sc237 prions in Syrian hamster brain homogenates to 1% SDS and 0.5% AcOH at room temperature resulted in a reduction of prion titer by a factor of ca. 10(7); however, all of the bioassay hamsters eventually developed prion disease. When various concentrations of SDS and AcOH were tested, the duration and temperature of exposure acted synergistically to inactivate both hamster Sc237 prions and human sporadic Creutzfeldt-Jakob disease (sCJD) prions. The inactivation of prions in brain homogenates and those bound to stainless steel wires was evaluated by using bioassays in transgenic mice. sCJD prions were more than 100,000 times more resistant to inactivation than Sc237 prions, demonstrating that inactivation procedures validated on rodent prions cannot be extrapolated to inactivation of human prions. Some procedures that significantly reduced prion titers in brain homogenates had a limited effect on prions bound to the surface of stainless steel wires. Using acidic SDS combined with autoclaving for 15 min, human sCJD prions bound to stainless steel wires were eliminated. Our findings form the basis for a noncorrosive system that is suitable for inactivating prions on surgical instruments, as well as on other medical and dental equipment.


Assuntos
Proteínas PrPSc/imunologia , Príons/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Animais , Cricetinae , Humanos , Camundongos , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas , Príons/genética , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa