Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 136(23): 2703-2714, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678887

RESUMO

The assembly of the enzyme-activated factor IX (FIXa) with its cofactor, activated factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis and causes hemophilia. FIXa is a notoriously inefficient enzyme that needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study, we employed hydrogen-deuterium exchange-mass spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in the presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those changes that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that 3 helices are involved in FIXa-FVIIIa assembly. These are part of a basic interface that is also known as exosite II. Mutagenesis of basic residues herein, followed by functional studies, identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme-cofactor complexes in the hemostatic system.


Assuntos
Medição da Troca de Deutério , Fator IXa/química , Fator VIII/química , Espectrometria de Massas , Mutação , Regulação Alostérica/genética , Fator IXa/genética , Fator IXa/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Humanos , Conformação Proteica em alfa-Hélice , Domínios Proteicos
2.
J Biol Chem ; 282(43): 31569-79, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17726015

RESUMO

Factor Xa (FXa) is a key protease of the coagulation pathway whose activity is known to be in part modulated by binding to factor Va (FVa) and sodium ions. Previous investigations have established that solvent-exposed, charged residues of the FXa alpha-helix 163-170 (h163-170), Arg(165) and Lys(169), participate in its binding to FVa. In the present study we aimed to investigate the role of the other residues of h163-170 in the catalytic functions of the enzyme. FX derivatives were constructed in which point mutations were made or parts of h163-170 were substituted with the corresponding region of either FVIIa or FIXa. Purified FXa derivatives were compared with wild-type FXa. Kinetic studies in the absence of FVa revealed that, compared with wild-type FXa, key functional parameters (catalytic activity toward prothrombin and tripeptidyl substrates and non-enzymatic interaction of a probe with the S1 site) were diminished by mutations in the NH(2)-terminal portion of h163-170. The defective amidolytic activity of these FXa derivatives appears to result from their impaired interaction with Na(+) because using a higher Na(+) concentration partially restored normal catalytic parameters. Furthermore, kinetic measurements with tripeptidyl substrates or prothrombin indicated that assembly of these FXa derivatives with an excess of FVa in the prothrombinase complex improves their low catalytic efficiency. These data indicate that residues in the NH(2)-terminal portion of the FVa-binding h163-170 are energetically linked to the S1 site and Na(+)-binding site of the protease and that residues Val(163) and Ser(167) play a key role in this interaction.


Assuntos
Fator Xa/química , Fator Xa/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Fator Va/metabolismo , Fator Xa/genética , Fator Xa/isolamento & purificação , Inibidores do Fator Xa , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Protrombina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Sódio/metabolismo , Especificidade por Substrato , Trombina/biossíntese , Valina/metabolismo
3.
Biochemistry ; 45(35): 10777-85, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16939230

RESUMO

The light chain of activated factor IX (FIXa) is involved in a number of functional properties, including FIXa enzymatic activity. This suggests the existence of a functional link between the FIXa light chain and the catalytic domain. The FIXa structure includes a few putative interactions between EGF2 and the protease domain. The role thereof has been addressed in this study. Recombinant FIX variants FIX-N92A, FIX-N92H, FIX-Y295A, and FIX-F299A were produced in 293 cells. After activation, the purified mutants were analyzed for a variety of functional parameters. None of these substitutions had a major effect on the interaction with antithrombin or the cleavage of the chromogenic substrate CH(3)SO(2)-d-CHG-Gly-Arg-p-nitroanilide. All FIXa mutants, however, exhibited a reduced level of factor X (FX) activation. Defective proteolytic activity occurred both in the absence and in the presence of activated factor VIII (FVIIIa). All mutants also exhibited a reduced level of FX activation in the absence of phospholipids. This suggests that putative interdomain contacts involving residues Asn(92), Tyr(295), and Phe(299) affect reactivity toward FX. Detailed kinetic studies in the presence of phospholipids and FVIIIa revealed substrate inhibition, particularly for mutants FIXa-N92A and FIXa-N92H. Surface plasmon resonance demonstrated that the same replacements weaken the association with the isolated factor VIII (FVIII) A2 domain and the FVIII light chain. This implies a defect in the formation of the FX-activating complex that is membrane-independent. We conclude that contacts between EGF2 and the protease domain of FIXa are crucial for FIXa enzymatic activity and for the assembly of the FX-activating complex.


Assuntos
Fator de Crescimento Epidérmico/química , Fator IX/química , Fator VIII/química , Fator X/química , Peptídeo Hidrolases/química , Aminofenóis/química , Antitrombinas/química , Antitrombinas/farmacologia , Sítios de Ligação , Linhagem Celular , Ativação Enzimática , Fator IX/genética , Humanos , Cinética , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
J Biol Chem ; 277(23): 20214-20, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-11925427

RESUMO

The light chain of activated factor IX comprises multiple interactions between both epidermal growth factor-like domains that contribute to enzymatic activity and binding of factor IXa to its cofactor factor VIIIa. To investigate the association between factor IXa-specific properties and surface-exposed structure elements, chimeras were constructed in which the interconnection between the modules Leu(84)-Thr(87) and the factor IX-specific loop Asn(89)-Lys(91) were exchanged for corresponding regions of factor X and factor VII. In absence of factor VIIIa, all chimeras displayed normal enzymatic activity. In the presence of factor VIIIa, replacement of loop Asn(89)-Lys(91) resulted in a minor reduction in factor IXa activity. However, chimeras with substitutions or insertions in the spacer between the epidermal growth factor-like domains showed a major defect in response to factor VIIIa. Of these chimeras, some displayed a normal response to isolated factor VIII A2 domain as a cofactor in factor X activation. Surprisingly, chimeras containing elongated inter-domain spacers from factor X or VII displayed reduced response to both complete factor VIIIa and the isolated A2 domain. Moreover, these chimeras still displayed effective association with immobilized A2 domain as assessed by surface plasmon resonance. We conclude that both sequence and length of the junction Leu(84)-Thr(87) between both epidermal growth factor-like domains contribute to the enhancement of factor IXa enzymatic activity that occurs upon assembly with factor VIIIa.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Fator IX/metabolismo , Fator VIIIa/metabolismo , Amidas/metabolismo , Sequência de Aminoácidos , Fator de Crescimento Epidérmico/química , Fator IX/química , Fator VIIIa/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa