Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(3): 325-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027719

RESUMO

Hydrogen transport in solids, applied in electrochemical devices such as fuel cells and electrolysis cells, is key to sustainable energy societies. Although using proton (H+) conductors is an attractive choice, practical conductivity at intermediate temperatures (200-400 °C), which would be ideal for most energy and chemical conversion applications, remains a challenge. Alternatively, hydride ions (H-), that is, monovalent anions with high polarizability, can be considered a promising charge carrier that facilitates fast ionic conduction in solids. Here, we report a K2NiF4-type Ba-Li oxyhydride with an appreciable amount of hydrogen vacancies that presents long-range order at room temperature. Increasing the temperature results in the disappearance of the vacancy ordering, triggering a high and essentially temperature-independent H- conductivity of more than 0.01 S cm-1 above 315 °C. Such a remarkable H- conducting nature at intermediate temperatures is anticipated to be important for energy and chemical conversion devices.


Assuntos
Eletrólitos , Prótons , Condutividade Elétrica , Transporte de Íons , Íons
2.
Phys Chem Chem Phys ; 23(25): 13819-13826, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195732

RESUMO

High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration. Already at low concentrations ordering on microscopic length scales in the electrolytes is revealed by small angle X-ray scattering, as a result of correlations of Li+ coordinating clusters. For higher salt concentrations a charge alternation-like ordering is found as anions start to take part in the solvation. Results from quasi-elastic neutron spectroscopy reveal a jump diffusion dynamical process with jump lengths virtually independent of both temperature and Li-salt concentration. The jump can be envisaged as dissociation of a solvent molecule or anion from a particular Li+ solvation structure. The residence time, 50-800 ps, between the jumps is found to be highly temperature and Li-salt concentration dependent, with shorter residence times for higher temperature and lower concentrations. The increased residence time at high Li-salt concentration can be attributed to changes in the interaction of the solvation shell as a larger fraction of TFSI anions take part in the solvation, forming more stable solvation shells.

3.
J Chem Phys ; 154(9): 094505, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685146

RESUMO

We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.

4.
Soft Matter ; 16(8): 2005-2016, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003764

RESUMO

The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized γ-relaxation at lower temperatures and a so called α2-relaxation at higher temperatures. The relaxation rates of the α2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by Hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric α2-relaxation and follow the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called α1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the α1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy, which supports its assignment. The α2-relaxation is assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric γ-relaxation.

5.
Phys Chem Chem Phys ; 22(25): 14169-14176, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609117

RESUMO

Room temperature ionic liquids are salts with low melting points achieved by employing bulky and asymmetrical ions. The molecular design leads to apolar and polar parts as well as the presence of competing Coulomb and van der Waals interactions giving rise to nano-scale structure, e.g. charge ordering. In this paper we address the question of how these nano-scale structures influence transport properties and dynamics on different timescales. We apply pressure and temperature as control parameters and investigate the structure factor, charge transport, microscopic alpha relaxation and phonon dynamics in the phase diagram of an ionic liquid. Including viscosity and self diffusion data from literature we find that all the dynamic and transport variables studied follow the same density scaling, i.e. they all depend on the scaling variable Γ = ργ/T, with γ = 2.8. The molecular nearest neighbor structure is found to follow a density scaling identical to that of the dynamics, while this is not the case for the charge ordering, indicating that the charge ordering has little influence on the investigated dynamics.

6.
J Am Chem Soc ; 141(25): 9989-9997, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194535

RESUMO

Extensive quasielastic neutron scattering measurements have been used to directly observe oxide ion dynamics on the nanosecond time scale in bismuth vanadate with formula Bi0.913V0.087O1.587, which exhibits remarkable oxide ion conductivity at low temperatures. This is the longest time scale neutron scattering study of any fluorite-type solid electrolyte, and it represents only the second case of oxide ion dynamics in any material observed on a nanosecond time scale by quasielastic neutron scattering. Ab initio molecular dynamics simulations reveal two mechanisms that contribute to the oxide ion dynamics in the material: a slower diffusion process through the Bi-O sublattice and a faster process which corresponds to more localized dynamics of the oxide ions within the VO x coordination spheres. The length of the trajectories simulated and the validation of the simulations by neutron scattering experiments provide for the first time a quantitative insight into the relative contributions of the two processes to the oxide ion conduction in this exceptional solid electrolyte, which can be used to derive design principles for the preparation of related oxide ion conductors with even better properties.

7.
J Chem Phys ; 149(21): 214503, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525716

RESUMO

The relaxation dynamics in two van der Waals bonded liquids and one hydrogen-bonding molecular liquid are studied as a function of pressure and temperature by incoherent neutron scattering using simultaneous dielectric spectroscopy. The dynamics are studied in a range of alpha relaxation times from pico- to milliseconds, primarily in the equilibrium liquid state. In this range, we find that isochronal superposition and density scaling work not only for the two van der Waals liquids but also for the hydrogen-bonding liquid, though the density scaling exponent is much smaller for the latter. Density scaling and isochronal superposition are seen to break down for intra-molecular dynamics when it is separated in time from the alpha relaxation, in close agreement with previous observations from molecular dynamics simulations.

8.
Phys Chem Chem Phys ; 19(42): 28540-28554, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063940

RESUMO

The unique proton conduction mechanism of phosphoric acid is important for the functions of complex phosphate containing biological and technological systems (e.g. phospholipid membranes and polybenzimidazole phosphoric acid membranes for high-temperature PEM fuel cells). In neat phosphoric acid structural proton diffusion, i.e. proton hopping between phosphoric acid molecules, is superimposed onto hydrodynamic diffusion of the molecules in the viscous liquid. In this study we separate the two dynamic contributions on the nanosecond timescale for the model systems phosphoric acid-water and phosphoric acid-benzimidazole. We demonstrate that 1H NMR dipolar relaxation measurements are controlled by hydrodynamic diffusion for the investigated conditions, while 17O NMR quadrupolar relaxation measurements reflect local proton displacement as part of structural diffusion. Quasielastic neutron scattering (QENS) applying high resolution backscattering spectroscopy (nBSS) confirms structural proton diffusion measurements using PFG-NMR in phosphoric acid-benzimidazole mixtures at different concentrations. With increasing benzimidazole content proton diffusion coefficients on the nanosecond scale decrease, thus following the trend of reduced hydrogen bond network frustration. The momentum transfer (Q) dependence of the width of the QENS spectra indicates the jump diffusion mechanism and can be scaled to a master plot both for different temperatures and different benzimidazole contents. This indicates a fundamentally unchanged structural proton diffusion process, however, with a lower probability of occurrence for successful intermolecular proton transfer with increasing benzimidazole content. Results of this work enable a better separation of different diffusion processes on short timescales also in more complex phosphoric acid containing systems.

9.
Phys Chem Chem Phys ; 19(40): 27739-27754, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28984889

RESUMO

We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

10.
J Chem Phys ; 146(2): 024501, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088144

RESUMO

The confinement of liquid mixtures in porous channels provides new insight into fluid ordering at the nanoscale. In this study, we address a phenomenon of microphase separation, which appears as a novel fascinating confinement effect for fully miscible binary liquids. We investigate the structure of tert-butanol-toluene mixtures confined in the straight and mono-dispersed cylindrical nanochannels of SBA-15 mesoporous silicates (D = 8.3 nm). Small angle neutron scattering experiments on samples with carefully designed isotopic compositions are performed to systematically vary the scattering length density of the different compounds and assess the radial concentration profile of the confined phases. The resulting modulation of the Bragg reflections of SBA-15 is compared with the predictions from different core-shell models, highlighting a molecular-scale phase-separated tubular structure with the tert-butanol forming a layer at the pore surface, surrounding a toluene-rich core. The present structural study suggests that the microphase separation phenomenon in confinement, which so far had only been reported for a smaller pore size (D = 3.65 nm) and a unique mixture composition, must be considered as a general phenomenon. It also highlights the strength of neutron scattering method with isotopic substitution, which is a unique experimental approach to reveal this phenomenon.

11.
Phys Chem Chem Phys ; 18(41): 28973-28981, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27725982

RESUMO

We investigate the ring rotation dynamics in poly(vinylferrocene) (PVFc) using incoherent neutron spectroscopy. PVFc contains ferrocene units laterally attached to a polymer backbone, allowing for one cyclopentadienyl ring of the organometallic sandwich structure of ferrocene to undergo rotational jump diffusion. The barrier of rotation is found to be broadly distributed, but the dynamics can be well described using a rotation rate distribution model which is well known from the description of methyl group rotation in glassy polymers. As necessary information for the analysis of quasielastic scattering data, we measure the static structure factor of the polymer using polarized neutron diffraction. Neutron time-of-flight and backscattering data are then combined and consistently modeled over the large temperature range from 80 K to 350 K yielding an Arrhenius behavior of the jump rate distribution. The mean value of potential barrier distribution is found to be 〈EA〉 = 9.61(2) kJ mol-1 with a root mean square width of σE = 3.12(1) kJ mol-1, being the result of superposition of constant intramolecular and heterogeneous intermolecular rotational barriers.

12.
J Chem Phys ; 142(11): 114503, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796257

RESUMO

We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η(5)-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps among non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.

13.
Soft Matter ; 10(25): 4522-34, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24832498

RESUMO

Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3-22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with the channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter.

14.
Phys Chem Chem Phys ; 16(16): 7324-33, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24623092

RESUMO

The vibrational density of states of a series of homologous triphenylene-based discotic liquid crystals HATn (n = 5, 6, 8, 10, 12) depending on the length of the aliphatic side chain is investigated by means of inelastic neutron scattering. All studied materials have a plastic crystalline phase at low temperatures, followed by a hexagonally ordered liquid crystalline phase at higher temperatures and a quasi isotropic phase at the highest temperatures. The X-ray scattering pattern for the plastic crystalline phase of all materials shows a sharp Bragg reflection corresponding to the intercolumnar distance in the lower q-range and a peak at circa 17 nm(-1) related to intracolumnar distances between the cores perpendicular to the columns as well as a broad amorphous halo related to the disordered structure of the methylene groups in the side chains in the higher q-range. The intercolumnar distance increases linearly with increasing chain length for the hexagonal columnar ordered liquid crystalline phase. A similar behaviour is assumed for the plastic crystalline phase. Besides n = 8 all materials under study exhibit a Boson peak. With increasing chain length, the frequency of the Boson peak decreases and its intensity increases. This can be explained by a self-organized confinement model. The peaks for n = 10, 12 are much narrower than for n = 5, 6 which might imply the transformation from a rigid system to a softer one with increasing chain length. Moreover the results can also be discussed in the framework of a transition from an uncorrelated to a correlated disorder with increasing n where n = 8 might be speculatively considered as a transitional state.

15.
J Phys Chem B ; 127(20): 4570-4576, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172261

RESUMO

The dynamical properties of water molecules confined in the unidirectional hydrophilic nanopores of AlPO4-54 are investigated with quasi-elastic neutron scattering as a function of temperature down to 118 K. AlPO4-54 has among the largest pores known for aluminophosphates and zeolites (about 1.3 nm), though they are small enough to prevent water crystallization due to the high degree of confinement. Water molecular diffusion into the pore is here measured down to 258 K. Diffusion is slower than in bulk water and has an activation energy of Ea = (20.8 ± 2.8) kJ/mol, in agreement with previous studies on similar confining media. Surprisingly, local hydrogen dynamics associated with water reorientation is measured down to temperatures (118 K), i.e., well below the expected glass transition temperature of bulk water. The reorientational time scale shows the well-known non-Arrhenius behavior down to the freezing of water mass diffusion, while it shows a feeble temperature dependence below. This fast local dynamics, of the order of fractions of nanoseconds, is believed to take place in the dense, highly disordered amorphous water occupying the pore center, indicating its possible plastic nature.

16.
Phys Rev Lett ; 109(3): 035702, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861871

RESUMO

We study dynamically highly asymmetric binary mixtures comprised of small methyl tetrahydrofuran (MTHF) molecules and polystyrene. Combined use of dielectric spectroscopy, 2H nuclear magnetic resonance, incoherent quasielastic neutron scattering, and depolarized dynamic light scattering allows us to selectively probe the dynamics of the components in a broad dynamic range. It turns out that the mixtures exhibit two glass transitions in a wide concentration range although being fully miscible on a macroscopic scale. In between both glass transition temperatures, the dynamics of the small molecules show strong confinement effects, e.g., a crossover from Vogel-Fulcher to Arrhenius behavior of the time constants. Moreover, the dynamical behavior of small molecules close to the slow matrix is consistent with mode coupling theory predictions for a type-A glass transition, which was expected from recent theoretical and simulation studies in comparable systems.

17.
J Chem Phys ; 137(8): 084902, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22938260

RESUMO

(2)H-nuclear magnetic resonance (NMR) and neutron scattering (NS) on isotopically labelled samples have been combined to investigate the structure and dynamics of polyvinylpyrrolidone (PVP) aqueous solutions (4 water molecules/monomeric unit). Neutron diffraction evidences the nanosegregation of polymer main-chains and water molecules leading to the presence of water clusters. NMR reveals the same characteristic times and spectral shape as those of the slower process observed by broadband dielectric spectroscopy in this system [S. Cerveny et al., J. Chem. Phys. 128, 044901 (2008)]. The temperature dependence of such relaxation time crosses over from a cooperative-like behavior at high temperatures to an Arrhenius behavior at lower temperatures. Below the crossover, NMR features the spectral shape as due to a symmetric distribution of relaxation times and the underlying motions as isotropic. NS results on the structural relaxation of both components-isolated via H/D labeling-show (i) anomalously stretched and non-Gaussian functional forms of the intermediate scattering functions and (ii) a strong dynamic asymmetry between the components that increases with decreasing temperature. Strong heterogeneities associated to the nanosegregated structure and the dynamic asymmetry are invoked to explain the observed anomalies. On the other hand, at short times the atomic displacements are strongly coupled for PVP and water, presumably due to H-bond formation and densification of the sample upon hydration.


Assuntos
Simulação de Dinâmica Molecular , Povidona/química , Água/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Soluções
18.
J Chem Phys ; 136(12): 124505, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22462872

RESUMO

We present incoherent quasi-elastic neutron scattering measurements in a wave vector transfer range from 0.4 Å(-1) to 1.6Å (-1) on liquid n-hexane confined in cylindrical, parallel-aligned nanochannels of 6 nm mean diameter and 260 µm length in monolithic, mesoporous silicon. They are complemented with, and compared to, measurements on the bulk system in a temperature range from 50 K to 250 K. The time-of-flight spectra of the bulk liquid (BL) can be modeled by microscopic translational as well as fast localized rotational, thermally excited, stochastic motions of the molecules. In the nano-confined state of the liquid, which was prepared by vapor condensation, we find two molecular populations with distinct dynamics, a fraction which is immobile on the time scale of 1 ps to 100 ps probed in our experiments and a second component with a self-diffusion dynamics slightly slower than observed for the bulk liquid. No hints of an anisotropy of the translational diffusion with regard to the orientation of the channels' long axes have been found. The immobile fraction amounts to about 5% at 250 K, gradually increases upon cooling and exhibits an abrupt increase at 160 K (20 K below bulk crystallization), which indicates pore freezing.

19.
Nat Commun ; 13(1): 2809, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589719

RESUMO

While polyamide (PA) membranes are widespread in water purification and desalination by reverse osmosis, a molecular-level understanding of the dynamics of both confined water and polymer matrix remains elusive. Despite the dense hierarchical structure of PA membranes formed by interfacial polymerization, previous studies suggest that water diffusion remains largely unchanged with respect to bulk water. Here, we employ neutron spectroscopy to investigate PA membranes under precise hydration conditions, and a series of isotopic contrasts, to elucidate water transport and polymer relaxation, spanning ps-ns timescales, and Å-nm lengthscales. We experimentally resolve, for the first time, the multimodal diffusive nature of water in PA membranes: in addition to (slowed down) translational jump-diffusion, we observe a long-range and a localized mode, whose geometry and timescales we quantify. The PA matrix is also found to exhibit rotational relaxations commensurate with the nanoscale confinement observed in water diffusion. This comprehensive 'diffusion map' can anchor molecular and nanoscale simulations, and enable the predictive design of PA membranes with tuneable performance.

20.
Macromolecules ; 55(6): 2320-2332, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35355834

RESUMO

We have investigated an all-polymer nanocomposite (NC) consisting of single-chain nanoparticles (SCNPs) immersed in a matrix of linear chains of their precursors (25/75% composition in weight). The SCNPs were previously synthesized via "click" chemistry, which induces intramolecular cross-links in the individual macromolecules accompanied by a slight shift (5-8 K) of the glass transition temperature toward higher values and a broadening of the dynamic response with respect to the raw precursor material. The selective investigation of the dynamics of the NC components has been possible by using properly isotopically labeled materials and applying quasielastic neutron scattering techniques. Results have been analyzed in the momentum transfer range where the coherent scattering contribution is minimal, as determined by complementary neutron diffraction experiments with polarization analysis. We observe the development of dynamic heterogeneity in the intermediate scattering function of the NC components, which grows with increasing time. Local motions in the precursor matrix of the NC are accelerated with respect to the reference bulk behavior, while the displacements of SCNPs' hydrogens show enhanced deviations from Gaussian and exponential behavior compared with the pure melt of SCNPs. The resulting averaged behavior in the NC coincides with that of the pure precursor, in accordance with the macroscopic observations by differential scanning calorimetry (DSC) experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa