RESUMO
Disagreements persist regarding the neural basis of syntactic processing, which has been linked both to inferior frontal and posterior temporal regions of the brain. One focal point of the debate concerns the role of inferior frontal areas in receptive syntactic ability, which is mostly assessed using sentence comprehension involving complex syntactic structures, a task that is potentially confounded with working memory. Syntactic acceptability judgments may provide a better measure of receptive syntax by reducing the need to use high working memory load and complex sentences and by enabling assessment of various types of syntactic violations. We therefore tested the perception of grammatical violations by people with poststroke aphasia (n = 25), along with matched controls (n = 16), using English sentences involving errors in word order, agreement, or subcategorization. Lesion data were also collected. Control participants performed near ceiling in accuracy with higher discriminability of agreement and subcategorization violations than word order; aphasia participants were less able to discriminate violations, but, on average, paralleled control participants discriminability of types of violations. Lesion-symptom mapping showed a correlation between discriminability and posterior temporal regions, but not inferior frontal regions. We argue that these results diverge from models holding that frontal areas are amodal core regions in syntactic structure building and favor models that posit a core hierarchical system in posterior temporal regions.
Assuntos
Afasia , Mapeamento Encefálico , Julgamento , Acidente Vascular Cerebral , Humanos , Masculino , Afasia/fisiopatologia , Afasia/etiologia , Feminino , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Pessoa de Meia-Idade , Idoso , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Compreensão/fisiologia , Doença Crônica , Semântica , Percepção da Fala/fisiologia , AdultoRESUMO
Understanding the neurobiology of semantic knowledge is a major goal of cognitive neuroscience. Taxonomic and thematic semantic knowledge are represented differently within the brain's conceptual networks, but the specific neural mechanisms remain unclear. Some neurobiological models propose that the anterior temporal lobe is an important hub for taxonomic knowledge, whereas the TPJ is especially involved in the representation of thematic knowledge. However, recent studies have provided divergent evidence. In this context, we investigated the neural correlates of taxonomic and thematic confrontation naming errors in 79 people with aphasia. We used three complementary lesion-symptom mapping (LSM) methods to investigate how structure and function in both spared and impaired brain regions relate to taxonomic and thematic naming errors. Voxel-based LSM mapped brain damage, activation-based LSM mapped BOLD signal in surviving tissue, and network-based LSM mapped white matter subnetwork integrity to error type. Voxel- and network-based lesion symptom mapping provided converging evidence that damage/disruption of the left mid-to-anterior temporal lobe was associated with a greater proportion of thematic naming errors. Activation-based lesion symptom mapping revealed that higher BOLD signal in the left anterior temporal lobe during an in-house naming task was associated with a greater proportion of taxonomic errors on the Philadelphia Naming Test administered outside of the scanner. A lower BOLD signal in the bilateral angular gyrus, precuneus, and right inferior frontal cortex was associated with a greater proportion of taxonomic errors. These findings provide novel evidence that damage to the anterior temporal lobe is especially related to thematic naming errors.
Assuntos
Afasia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Afasia/fisiopatologia , Afasia/diagnóstico por imagem , Afasia/patologia , Idoso , Semântica , Adulto , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Lobo Temporal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologiaRESUMO
BACKGROUND: The National Institutes of Health Stroke Scale is a widely accepted tool for structured graded neurological examination of stroke or suspected stroke in the hyperacute setting. Concerns have arisen about the use of its picture stimuli in a contemporary and global health context. Here, we present new stimuli prepared to serve the needs of stroke providers worldwide: the precarious painter image description and updated objects for naming. METHODS: This was a validation study of 101 healthy fluent English speakers. Participants were reached by the Johns Hopkins Outpatient Center, the University of South Carolina, and Prisma Health from 2022 to 2023 and included residents of the United States, Germany, Canada, the United Kingdom, Australia, and Zambia. Participants were recorded in person or via video conferencing when asked to describe the new picture, while a subset named seven illustrations. Multivariate analyses of variance were used for primary analyses. In a complementary investigation, 299 attendees of the 2023 International Stroke Conference were asked about their preference for the existing or new stimuli and why. RESULTS: Each of the 44 content units from the picture description was included by at least 5% of respondents in the demographically representative subsample. Performance was similar across healthy participants irrespective of age, sex, race, ethnicity, or education. Typical descriptions were characterized by an average of 23 content units (SD=5) conveyed with 167 syllables (SD=79). The new naming stimuli were recognized by 100% of participants from many countries as being familiar and identifiable, and names provided in response to the task were highly convergent. The majority of stroke health care providers preferred both the precarious painter and naming stimuli. CONCLUSIONS: The description of the new National Institutes of Health Stroke Scale picture, the precarious painter, results in rich samples among healthy speakers that will provide an appropriate basis for the detection of language deficits.
Assuntos
Etnicidade , Acidente Vascular Cerebral , Humanos , Austrália , Canadá , Escolaridade , Acidente Vascular Cerebral/diagnósticoRESUMO
The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20-79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.
Assuntos
Encéfalo , Envelhecimento Saudável , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Envelhecimento Saudável/fisiologia , Envelhecimento Saudável/patologia , Envelhecimento Saudável/psicologia , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/anatomia & histologia , Software , Cognição/fisiologia , Atrofia/patologia , Envelhecimento/fisiologia , Envelhecimento/patologiaRESUMO
BACKGROUND: Language impairment (aphasia) is a common neurological deficit after strokes. For individuals with chronic aphasia (beyond 6 months after the stroke), language improvements with speech therapy (ST) are often limited. Transcranial direct current stimulation (tDCS) is a promising approach to complement language recovery but interindividual variability in treatment response is common after tDCS, suggesting a possible relationship between tDCS and type of linguistic impairment (aphasia type). METHODS: This current study is a subgroup analysis of a randomised controlled phase II futility design clinical trial on tDCS in chronic post-stroke aphasia. All participants received ST coupled with tDCS (n=31) vs sham tDCS (n=39). Confrontation naming was tested at baseline, and 1, 4, and 24 weeks post-treatment. RESULTS: Broca's aphasia was associated with maximal adjunctive benefit of tDCS, with an average improvement of 10 additional named items with tDCS+ST compared with ST alone at 4 weeks post-treatment. In comparison, tDCS was not associated with significant benefits for other aphasia types F(1)=4.23, p=0.04. Among participants with Broca's aphasia, preservation of the perilesional posterior inferior temporal cortex was associated with higher treatment benefit (R=0.35, p=0.03). CONCLUSIONS: These results indicate that adjuvant tDCS can enhance ST to treat naming in Broca's aphasia, and this may guide intervention approaches in future studies.
Assuntos
Afasia , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Afasia/etiologia , Afasia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Idioma , FonoterapiaRESUMO
AIMS: The aim of this study was to evaluate the utility of using MRI-derived tooth count, an indirect and nonspecific indicator of oral/periodontal health, and brain age gap (BAG), an MRI-based measure of premature brain aging, in predicting cognition in a population of otherwise healthy adults. METHODS: This retrospective study utilized data from 329 participants from the University of South Carolina's Aging Brain Cohort Repository. Participants underwent neuropsychological testing including the Montreal Cognitive Assessment (MoCA), completed an oral/periodontal health questionnaire, and submitted to high-resolution structural MRI imaging. The study compared variability on cognitive scores (MoCA) accounted for by MRI-derived BAG, MRI-derived total tooth count, and self-reported oral/periodontal health. RESULTS: We report a significant positive correlation between the total number of teeth and MoCA total scores after controlling for age, sex, and race, indicating a robust relationship between tooth count and cognition, r(208) = .233, p < .001. In a subsample of participants identified as being at risk for MCI (MoCA <= 25, N = 36) inclusion of MRI-based tooth count resulted in an R2 change of .192 (H0 = 0.138 â H1 = 0.330), F(1,31) = 8.86, p = .006. Notably, inclusion of BAG, a valid and reliable measure of overall brain health, did not significantly improve prediction of MoCA scores in similar linear regression models. CONCLUSIONS: Our data support the idea that inclusion of MRI-based total tooth count may enhance the ability to predict clinically meaningful differences in cognitive abilities in healthy adults. This study contributes to the growing body of evidence linking oral/periodontal health with cognitive function.
RESUMO
In post-stroke aphasia, language improvements following speech therapy are variable and can only be partially explained by the lesion. Brain tissue integrity beyond the lesion (brain health) may influence language recovery and can be impacted by cardiovascular risk factors, notably diabetes. We examined the impact of diabetes on structural network integrity and language recovery. Seventy-eight participants with chronic post-stroke aphasia underwent six weeks of semantic and phonological language therapy. To quantify structural network integrity, we evaluated the ratio of long-to-short-range white matter fibers within each participant's whole brain connectome, as long-range fibers are more susceptible to vascular injury and have been linked to high level cognitive processing. We found that diabetes moderated the relationship between structural network integrity and naming improvement at 1 month post treatment. For participants without diabetes (n = 59), there was a positive relationship between structural network integrity and naming improvement (t = 2.19, p = 0.032). Among individuals with diabetes (n = 19), there were fewer treatment gains and virtually no association between structural network integrity and naming improvement. Our results indicate that structural network integrity is associated with treatment gains in aphasia for those without diabetes. These results highlight the importance of post-stroke structural white matter architectural integrity in aphasia recovery.
Assuntos
Afasia , Diabetes Mellitus , Acidente Vascular Cerebral , Humanos , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Idioma , Diabetes Mellitus/patologiaRESUMO
Lesion-symptom mapping studies provide insight into what areas of the brain are involved in different aspects of cognition. This is commonly done via behavioral testing in patients with a naturally occurring brain injury or lesions (e.g., strokes or brain tumors). This results in high-dimensional observational data where lesion status (present/absent) is nonuniformly distributed, with some voxels having lesions in very few (or no) subjects. In this situation, mass univariate hypothesis tests have severe power heterogeneity where many tests are known a priori to have little to no power. Recent advancements in multiple testing methodologies allow researchers to weigh hypotheses according to side information (e.g., information on power heterogeneity). In this paper, we propose the use of p-value weighting for voxel-based lesion-symptom mapping studies. The weights are created using the distribution of lesion status and spatial information to estimate different non-null prior probabilities for each hypothesis test through some common approaches. We provide a monotone minimum weight criterion, which requires minimum a priori power information. Our methods are demonstrated on dependent simulated data and an aphasia study investigating which regions of the brain are associated with the severity of language impairment among stroke survivors. The results demonstrate that the proposed methods have robust error control and can increase power. Further, we showcase how weights can be used to identify regions that are inconclusive due to lack of power.
Assuntos
Biometria , Humanos , Biometria/métodos , Afasia/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Reações Falso-PositivasRESUMO
Aphasia recovery after stroke depends on the condition of the remaining, extralesional brain network. Network control theory (NCT) provides a unique, quantitative approach to assess the interaction between brain networks. In this longitudinal, large-scale, whole-brain connectome study, we evaluated whether controllability measures of language-related regions are associated with treated aphasia recovery. Using probabilistic tractography and controlling for the effects of structural lesions, we reconstructed whole-brain diffusion tensor imaging (DTI) connectomes from 68 individuals (20 female, 48 male) with chronic poststroke aphasia who completed a three-week language therapy. Applying principles of NCT, we computed regional (1) average and (2) modal controllability, which decode the ability of a region to (1) spread control input through the brain network and (2) to facilitate brain state transitions. We tested the relationship between pretreatment controllability measures of 20 language-related left hemisphere regions and improvements in naming six months after language therapy using multiple linear regressions and a parsimonious elastic net regression model with cross-validation. Regional controllability of the inferior frontal gyrus (IFG) pars opercularis, pars orbitalis, and the anterior insula were associated with treatment outcomes independently of baseline aphasia severity, lesion volume, age, education, and network size. Modal controllability of the IFG pars opercularis was the strongest predictor of treated aphasia recovery with cross-validation and outperformed traditional graph theory, lesion load, and demographic measures. Regional NCT measures can reflect the status of the residual language network and its interaction with the remaining brain network, being able to predict language recovery after aphasia treatment.SIGNIFICANCE STATEMENT Predicting and understanding language recovery after brain injury remains a challenging, albeit a fundamental aspect of human neurology and neuroscience. In this study, we applied network control theory (NCT) to fully harness the concept of brain networks as dynamic systems and to evaluate their interaction. We studied 68 stroke survivors with aphasia who underwent imaging and longitudinal behavioral assessments coupled with language therapy. We found that the controllability of the inferior frontal regional network significantly predicted recovery in language production six months after treatment. Importantly, controllability outperformed traditional demographic, lesion, and graph-theoretical measures. Our findings shed light on the neurobiological basis of human language and can be translated into personalized rehabilitation approaches.
Assuntos
Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia , Encéfalo/diagnóstico por imagem , Idioma , Rede Nervosa/diagnóstico por imagem , Recuperação de Função Fisiológica , Estimulação Acústica/métodos , Adulto , Idoso , Encéfalo/fisiologia , Conectoma/métodos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Estimulação Luminosa/métodos , Recuperação de Função Fisiológica/fisiologiaRESUMO
BACKGROUND: Transcranial direct-current stimulation (tDCS) is a promising adjunct to therapy for chronic aphasia. METHODS: This single-center, randomized, double-blind, sham-controlled efficacy trial tested the hypothesis that anodal tDCS augments language therapy in subacute aphasia. Secondarily, we compared the effect of tDCS on discourse measures and quality of life and compared the effects on naming to previous findings in chronic stroke. Right-handed English speakers with aphasia <3 months after left hemisphere ischemic stroke were included, unless they had prior neurological or psychiatric disease or injury or were taking certain medications (34 excluded; final sample, 58). Participants were randomized 1:1, controlling for age, aphasia type, and severity, to receive 20 minutes of tDCS (1 mA) or sham-tDCS in addition to fifteen 45-minute sessions of naming treatment (plus standard care). The primary outcome variable was change in naming accuracy of untrained pictures pretreatment to 1-week posttreatment. RESULTS: Baseline characteristics were similar between the tDCS (N=30) and sham (N=28) groups: patients were 65 years old, 53% male, and 2 months from stroke onset on average. In intent-to-treat analysis, the adjusted mean change from baseline to 1-week posttreatment in picture naming was 22.3 (95% CI, 13.5-31.2) for tDCS and 18.5 (9.6-27.4) for sham and was not significantly different. Content and efficiency of picture description improved more with tDCS than sham. Groups did not differ in quality of life improvement. No patients were withdrawn due to adverse events. CONCLUSIONS: tDCS did not improve recovery of picture naming but did improve recovery of discourse. Discourse skills are critical to participation. Future research should examine tDCS in a larger sample with richer functional outcomes. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02674490.
Assuntos
Afasia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Masculino , Humanos , Idoso , Feminino , Qualidade de Vida , Afasia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Método Duplo-CegoRESUMO
Objective: We evaluated the association of household food insecurity (FI) with cognition in youth and young adults with type 1 diabetes (T1D) or type 2 diabetes (T2D). Design: In this cross-sectional study, age-adjusted scores for composite Fluid Cognition, and sub-domain scores for Receptive Language and Inhibitory Control and Attention, were modeled stratified by diabetes-type using linear regression, with FI in the past year as the predictor, controlling for covariates. Tests for processing speed, inhibitory control/attention, working memory, episodic memory, and cognitive flexibility were administered to measure composite Fluid Cognition score. The NIHT-CB Picture Vocabulary Test was used to assess Crystallized Cognition score and rapid identification of congruent versus noncongruent items were used to assess Inhibitory Control and Attention score. Setting: The SEARCH for Diabetes in Youth study, representative of 5 U.S. states. Participants: Included 1574 youth and young adults with T1D or T2D, mean age of 21 years, mean diabetes duration of 11 years, 51% non-Hispanic white, and 47% had higher HbA1c levels (>9% HbA1c). Results: Approximately 18% of the 1,240 participants with T1D and 31% of the 334 with T2D experienced FI. The food-insecure group with T1D had a lower composite Fluid Cognition score (ß= -2.5, 95% confidence interval (CI)= -4.8, -0.1) and a lower Crystallized Cognition score (ß= -3.4, CI= -5.6, -1.3) than food-secure peers. Findings were attenuated to non-significance after adjustment for demographics. Among T2D participants, no associations were observed. In participants with T1D effect modification by glycemic levels were found in the association between FI and composite Fluid Cognition score but adjustment for socioeconomic characteristics attenuated the interaction (p=0.0531). Conclusions: Food-insecure youth and young adults with T1D or T2D did not have different cognition compared to those who were food-secure after adjustment for confounders. Longitudinal research is needed to further understand relations amongst these factors.
Assuntos
Cognição , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insegurança Alimentar , Humanos , Feminino , Masculino , Adolescente , Estudos Transversais , Diabetes Mellitus Tipo 1/psicologia , Diabetes Mellitus Tipo 1/epidemiologia , Adulto Jovem , Cognição/fisiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/psicologia , Adulto , Criança , Características da FamíliaRESUMO
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex non-canonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and non-canonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for non-canonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and non-canonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Assuntos
Afasia , Conectoma , Acidente Vascular Cerebral , Humanos , Afasia de Wernicke , Compreensão , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância MagnéticaRESUMO
The neural basis of language has been studied for centuries, yet the networks critically involved in simply identifying or understanding a spoken word remain elusive. Several functional-anatomical models of critical neural substrates of receptive speech have been proposed, including (1) auditory-related regions in the left mid-posterior superior temporal lobe, (2) motor-related regions in the left frontal lobe (in normal and/or noisy conditions), (3) the left anterior superior temporal lobe, or (4) bilateral mid-posterior superior temporal areas. One difficulty in comparing these models is that they often focus on different aspects of the sound-to-meaning pathway and are supported by different types of stimuli and tasks. Two auditory tasks that are typically used in separate studies-syllable discrimination and word comprehension-often yield different conclusions. We assessed syllable discrimination (words and nonwords) and word comprehension (clear speech and with a noise masker) in 158 individuals with focal brain damage: left (n = 113) or right (n = 19) hemisphere stroke, left (n = 18) or right (n = 8) anterior temporal lobectomy, and 26 neurologically intact controls. Discrimination and comprehension tasks are doubly dissociable both behaviorally and neurologically. In support of a bilateral model, clear speech comprehension was near ceiling in 95% of left stroke cases and right temporal damage impaired syllable discrimination. Lesion-symptom mapping analyses for the syllable discrimination and noisy word comprehension tasks each implicated most of the left superior temporal gyrus. Comprehension but not discrimination tasks also implicated the left posterior middle temporal gyrus, whereas discrimination but not comprehension tasks also implicated more dorsal sensorimotor regions in posterior perisylvian cortex.
Assuntos
Percepção da Fala , Acidente Vascular Cerebral , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Neuroanatomia , Fala , Acidente Vascular Cerebral/patologia , Lobo Temporal/patologiaRESUMO
We used left-hemisphere stroke as a model to examine how damage to sensorimotor brain networks impairs vocal auditory feedback processing and control. Individuals with post-stroke aphasia and matched neurotypical control subjects vocalized speech vowel sounds and listened to the playback of their self-produced vocalizations under normal (NAF) and pitch-shifted altered auditory feedback (AAF) while their brain activity was recorded using electroencephalography (EEG) signals. Event-related potentials (ERPs) were utilized as a neural index to probe the effect of vocal production on auditory feedback processing with high temporal resolution, while lesion data in the stroke group was used to determine how brain abnormality accounted for the impairment of such mechanisms. Results revealed that ERP activity was aberrantly modulated during vocalization vs. listening in aphasia, and this effect was accompanied by the reduced magnitude of compensatory vocal responses to pitch-shift alterations in the auditory feedback compared with control subjects. Lesion-mapping revealed that the aberrant pattern of ERP modulation in response to NAF was accounted for by damage to sensorimotor networks within the left-hemisphere inferior frontal, precentral, inferior parietal, and superior temporal cortices. For responses to AAF, neural deficits were predicted by damage to a distinguishable network within the inferior frontal and parietal cortices. These findings define the left-hemisphere sensorimotor networks implicated in auditory feedback processing, error detection, and vocal motor control. Our results provide translational synergy to inform the theoretical models of sensorimotor integration while having clinical applications for diagnosis and treatment of communication disabilities in individuals with stroke and other neurological conditions.
Assuntos
Afasia/fisiopatologia , Percepção Auditiva/fisiologia , Eletroencefalografia , Retroalimentação Sensorial/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fonética , South CarolinaRESUMO
Theories of language organization in the brain commonly posit that different regions underlie distinct linguistic mechanisms. However, such theories have been criticized on the grounds that many neuroimaging studies of language processing find similar effects across regions. Moreover, condition by region interaction effects, which provide the strongest evidence of functional differentiation between regions, have rarely been offered in support of these theories. Here we address this by using lesion-symptom mapping in three large, partially-overlapping groups of aphasia patients with left hemisphere brain damage due to stroke (N = 121, N = 92, N = 218). We identified multiple measure by region interaction effects, associating damage to the posterior middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the language network are undifferentiated with respect to high-level linguistic processing.
Assuntos
Afasia/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Adulto , Idoso , Compreensão , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Lobo TemporalRESUMO
Motor action selection engages a network of frontal and parietal brain regions. After stroke, individuals activate a similar network, however, activation is higher, especially in the contralesional hemisphere. The current study examined the effect of practice on action selection performance and brain activation after stroke. Sixteen individuals with chronic stroke (Upper Extremity Fugl-Meyer motor score range: 18-61) moved a joystick with the more-impaired hand in two conditions: Select (externally cued choice; move right or left based on an abstract rule) and Execute (simple response; move same direction every trial). On Day 1, reaction time (RT) was longer in Select compared to Execute, which corresponded to increased activation primarily in regions in the contralesional action selection network including dorsal premotor, supplementary motor, anterior cingulate and parietal cortices. After 4 days of practice, behavioural performance improved (decreased RT), and only contralesional parietal cortex significantly increased during Select. Higher brain activation on Day 1 in the bilateral action selection network, dorsolateral prefrontal cortex and contralesional sensory cortex predicted better performance on Day 4. Overall, practice led to improved action selection performance and reduced brain activation. Systematic changes in practice conditions may allow the targeting of specific components of the motor network during rehabilitation after stroke.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal , Tempo de Reação/fisiologiaRESUMO
The Rehabilitation Treatment Specification System (RTSS) was developed as a systematic way to describe rehabilitation treatments for the purpose of both research and practice. The RTSS groups treatments by type and describes them by 3 elements: the treatment (1) ingredients and (2) the mechanisms of action that yield changes in the (3) target behavior. Adopting the RTSS has the potential to improve consistency in research, allowing for better cross-study comparisons to strengthen the body of research supporting various treatments. Because it is still early in its development, the RTSS has not yet been widely implemented across different rehabilitation disciplines. In particular, aphasia recovery is one area of rehabilitation that could benefit from a unifying framework. Accordingly, this article is part of a series where we illustrate how the RTSS can be applied to aphasia treatment and research. This article more specifically focuses on examining the neurobiological mechanisms of action associated with experimental aphasia therapies, including brain stimulation and pharmacologic intervention, as well as more traditional behavioral therapy. Key elements of the RTSS are described, and 4 example studies are used to illustrate how the RTSS can be implemented. The benefits of a unifying framework for the future of aphasia treatment research and practice are discussed.
Assuntos
Afasia , Afasia/reabilitação , Terapia Comportamental , HumanosRESUMO
A considerable body of research supports the use of behavioral communication treatment as the standard of care for aphasia. In spite of robust progress in clinical aphasiology, many questions regarding optimal care remain unanswered. One of the major challenges to progress in the field is the lack of a common framework to adequately describe individual treatments, which, if available, would allow comparisons across studies as well as improved communication among researchers, clinicians, and other stakeholders. Here, we describe how aphasia treatment approaches can be systematically characterized using the Rehabilitation Treatment Specification System (RTSS). At the core of the RTSS is a tripartite structure that focuses on targets (the behavior that is expected to change as a result of treatment), ingredients (what a clinician does to affect change in the target), and mechanism(s) of action (why a given treatment works by linking the ingredients to the target). Three separate articles in the current issue specifically describe how the RTSS can be used to describe different kinds of aphasia treatment approaches: functional approaches, cognitive-linguistic approaches, and biological approaches. It is our hope that the application of the RTSS in clinical aphasiology will improve communication in published studies, grant proposals, and in the clinical care of persons with aphasia.
Assuntos
Afasia , Terapia Cognitivo-Comportamental , Afasia/reabilitação , Comunicação , HumanosRESUMO
The application of â1-regularized machine learning models to high-dimensional connectomes offers a promising methodology to assess clinical-anatomical correlations in humans. Here, we integrate the connectome-based lesion-symptom mapping framework with sparse partial least squares regression (sPLS-R) to isolate elements of the connectome associated with speech repetition deficits. By mapping over 2,500 connections of the structural connectome in a cohort of 71 stroke-induced cases of aphasia presenting with varying left-hemisphere lesions and repetition impairment, sPLS-R was trained on 50 subjects to algorithmically identify connectomic features on the basis of their predictive value. The highest ranking features were subsequently used to generate a parsimonious predictive model for speech repetition whose predictions were evaluated on a held-out set of 21 subjects. A set of 10 short- and long-range parieto-temporal connections were identified, collectively delineating the broader circuitry of the dorsal white matter network of the language system. The strongest contributing feature was a short-range connection in the supramarginal gyrus, approximating the cortical localization of area Spt, with parallel long-range pathways interconnecting posterior nodes in supramarginal and superior temporal cortex with anterior nodes in both ventral and-notably-in dorsal premotor cortex, respectively. The collective disruption of these pathways indexed repetition performance in the held-out set of participants, suggesting that these impairments might be characterized as a parietotemporal disconnection syndrome impacting cortical area Spt and its associated white matter circuits of the frontal lobe as opposed to being purely a disconnection of the arcuate fasciculus.
Assuntos
Afasia/patologia , Afasia/fisiopatologia , Córtex Cerebral/patologia , Rede Nervosa/patologia , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Idoso , Afasia/diagnóstico por imagem , Afasia/etiologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal neuroimaging dataset. A total of 116 individuals with chronic left-hemisphere stroke were included in the study. Neuroimaging data included task-based functional magnetic resonance imaging (fMRI), diffusion-based fractional anisotropy (FA)-values, cerebral blood flow (CBF), and lesion-load data. The Western Aphasia Battery was used to measure aphasia severity and specific language functions. As a primary analysis, we constructed support vector regression (SVR) models predicting language measures based on (i) each neuroimaging modality separately, (ii) lesion volume alone, and (iii) a combination of all modalities. Prediction accuracy across models was subsequently statistically compared. Prediction accuracy across modalities and language measures varied substantially (predicted vs. empirical correlation range: r = .00-.67). The multimodal prediction model yielded the most accurate prediction in all cases (r = .53-.67). Statistical superiority in favor of the multimodal model was achieved in 28/30 model comparisons (p-value range: <.001-.046). Our results indicate that different neuroimaging modalities carry complementary information that can be integrated to more accurately depict how brain damage and remaining functionality of intact brain tissue translate into language function in aphasia.