RESUMO
The machines of WF Maschinenbau process metal blanks into various workpieces using so-called flow-forming processes. The quality of these workpieces depends largely on the quality of the blanks and the condition of the machine. This creates an urgent need for automated monitoring of the forming processes and the condition of the machine. Since the complexity of the flow-forming processes makes physical modeling impossible, the present work deals with data-driven modeling using machine learning algorithms. The main contributions of this work lie in showcasing the feasibility of utilizing machine learning and sensor data to monitor flow-forming processes, along with developing a practical approach for this purpose. The approach includes an experimental design capable of providing the necessary data, as well as a procedure for preprocessing the data and extracting features that capture the information needed by the machine learning models to detect defects in the blank and the machine. To make efficient use of the small number of experiments available, the experimental design is generated using Design of Experiments methods. They consist of two parts. In the first part, a pre-selection of influencing variables relevant to the forming process is performed. In the second part of the design, the selected variables are investigated in more detail. The preprocessing procedure consists of feature engineering, feature extraction and feature selection. In the feature engineering step, the data set is augmented with time series variables that are meaningful in the domain. For feature extraction, an algorithm was developed based on the mechanisms of the r-STSF, a state-of-the-art algorithm for time series classification, extending them for multivariate time series and metric target variables. This feature extraction algorithm itself can be seen as an additional contribution of this work, because it is not tied to the application domain of monitoring flow-forming processes, but can be used as a feature extraction algorithm for multivariate time series classification in general. For feature selection, a Recursive Feature Elimination is employed. With the resulting features, random forests are trained to detect several quality features of the blank and defects of the machine. The trained models achieve good prediction accuracy for most of the target variables. This shows that the application of machine learning is a promising approach for the monitoring of flow-forming processes, which requires further investigation for confirmation.
RESUMO
In this work, we describe the findings of the 'WisPerMed' team from their participation in Track 1 (Contextualized Medication Event Extraction) of the n2c2 2022 challenge. We tackle two tasks: (i) medication extraction, which involves extracting all mentions of medications from the clinical notes, and (ii) event classification, which involves classifying the medication mentions based on whether a change in the medication has been discussed. To address the long lengths of clinical texts, which often exceed the maximum token length that models based on the transformer-architecture can handle, various approaches, such as the use of ClinicalBERT with a sliding window approach and Longformer-based models, are employed. In addition, domain adaptation through masked language modeling and preprocessing steps such as sentence splitting are utilized to improve model performance. Since both tasks were treated as named entity recognition (NER) problems, a sanity check was performed in the second release to eliminate possible weaknesses in the medication detection itself. This check used the medication spans to remove false positive predictions and replace missed tokens with the highest softmax probability of the disposition types. The effectiveness of these approaches is evaluated through multiple submissions to the tasks, as well as with post-challenge results, with a focus on the DeBERTa v3 model and its disentangled attention mechanism. Results show that the DeBERTa v3 model performs well in both the NER task and the event classification task.
Assuntos
Idioma , Processamento de Linguagem NaturalRESUMO
The tracking of objects and person position, orientation, and movement is relevant for various medical use cases, e.g., practical training of medical staff or patient rehabilitation. However, these demand high tracking accuracy and occlusion robustness. Expensive professional tracking systems fulfill these demands, however, cost-efficient and potentially adequate alternatives can be found in the gaming industry, e.g., SteamVR Tracking. This work presents an evaluation of SteamVR Tracking in its latest version 2.0 in two experimental setups, involving two and four base stations. Tracking accuracy, both static and dynamic, and occlusion robustness are investigated using a VIVE Tracker (3.0). A dynamic analysis further compares three different velocities. An error evaluation is performed using a Universal Robots UR10 robotic arm as ground-truth system under nonlaboratory conditions. Results are presented using the Root Mean Square Error. For static experiments, tracking errors in the submillimeter and subdegree range are achieved by both setups. Dynamic experiments achieved errors in the submillimeter range as well, yet tracking accuracy suffers from increasing velocity. Four base stations enable generally higher accuracy and robustness, especially in the dynamic experiments. Both setups enable adequate accuracy for diverse medical use cases. However, use cases demanding very high accuracy should primarily rely on SteamVR Tracking 2.0 with four base stations.
Assuntos
Movimento , HumanosRESUMO
Identifying nanomaterials (NMs) according to European Union legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission's (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs.
RESUMO
OBJECTIVE: Although several studies have suggested that the incidence of intracranial aneurysms (IAs) is higher in smokers, the higher prevalence of subarachnoid hemorrhage (SAH) in smokers remains uncertain. It is unclear whether smoking additionally contributes to the formation of multiple aneurysms and the risk of rupture. The aim of this study was to determine whether smoking is associated with IA formation, multiplicity, or rupture. METHODS: Patients from the prospective multicenter @neurIST database (n = 1410; 985 females [69.9%]) were reviewed for the presence of SAH, multiple aneurysms, and smoking status. The prevalence of smokers in the population of patients diagnosed with at least one IA was compared with that of smokers in the general population. RESULTS: The proportion of smokers was higher in patients with IAs (56.2%) than in the reference population (51.4%; p < 0.001). A significant association of smoking with the presence of an IA was found throughout group comparisons (p = 0.01). The presence of multiple IAs was also significantly associated with smoking (p = 0.003). A trend was found between duration of smoking and the presence of multiple IAs (p = 0.057). However, the proportion of smokers among patients suffering SAH was similar to that of smokers among patients diagnosed with unruptured IAs (p = 0.48). CONCLUSIONS: Smoking is strongly associated with IA formation. Once an IA is present, however, smoking does not appear to increase the risk of rupture compared with IAs in the nonsmoking population. The trend toward an association between duration of smoking and the presence of multiple IAs stresses the need for counseling patients with IAs regarding lifestyle modification.
Assuntos
Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/etiologia , Tabagismo/complicações , Tabagismo/epidemiologia , Adulto , Idoso , Aneurisma Roto/epidemiologia , Progressão da Doença , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/etiologiaRESUMO
BACKGROUND: The importance of mobile health (mHealth) apps is growing. Independent of the technologies used, mHealth apps bring more functionality into the hands of users. In the health context, mHealth apps play an important role in providing information and services to patients, offering health care professionals ways to monitor vital parameters or consult patients remotely. The importance of confidentiality in health care and the opaqueness of transport security in apps make the latter an important research subject. OBJECTIVE: This study aimed to (1) identify relevant security concerns on the server side of mHealth apps, (2) test a subset of mHealth apps regarding their vulnerability to those concerns, and (3) compare the servers used by mHealth apps with servers used in all domains. METHODS: Server security characteristics relevant to the security of mHealth apps were assessed, presented, and discussed. To evaluate servers, appropriate tools were selected. Apps from the Android and iOS app stores were selected and tested, and the results for functional and other backend servers were evaluated. RESULTS: The 60 apps tested communicate with 823 servers. Of these, 291 were categorized as functional backend servers, and 44 (44/291, 15.1%) of these received a rating below the A range (A+, A, and A-) by Qualys SSL Labs. A chi-square test was conducted against the number of servers receiving such ratings from SSL Pulse by Qualys SSL Labs. It was found that the tested servers from mHealth apps received significantly fewer ratings below the A range (P<.001). The internationally available apps from the test set performed significantly better than those only available in the German stores (alpha=.05; P=.03). Of the 60 apps, 28 (28/60, 47%) were found using at least one functional backend server that received a rating below the A range from Qualys SSL Labs, endangering confidentiality, authenticity, and integrity of the data displayed. The number of apps that used at least one entirely unsecured connection was 20 (20/60, 33%) when communicating with functional backend servers. It was also found that a majority of apps used advertising, tracking, or external content provider servers. When looking at all nonfunctional backend servers, 48 (48/60, 80%) apps used at least one server that received a rating below the A range. CONCLUSIONS: The results show that although servers in the mHealth domain perform significantly better regarding their security, there are still problems with the configuration of some. The most severe problems observed can expose patient communication with health care professionals, be exploited to display false or harmful information, or used to send data to an app facilitating further damage on the device. Following the recommendations for mHealth app developers, the most regularly observed security issues can be avoided or mitigated.
Assuntos
Coleta de Dados/métodos , Aplicativos Móveis/normas , Telemedicina/métodos , HumanosRESUMO
Black-box deep learning (DL) models trained for the early detection of Alzheimer's Disease (AD) often lack systematic model interpretation. This work computes the activated brain regions during DL and compares those with classical Machine Learning (ML) explanations. The architectures used for DL were 3D DenseNets, EfficientNets, and Squeeze-and-Excitation (SE) networks. The classical models include Random Forests (RFs), Support Vector Machines (SVMs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LightGBM), Decision Trees (DTs), and Logistic Regression (LR). For explanations, SHapley Additive exPlanations (SHAP) values, Local Interpretable Model-agnostic Explanations (LIME), Gradient-weighted Class Activation Mapping (GradCAM), GradCAM++ and permutation-based feature importance were implemented. During interpretation, correlated features were consolidated into aspects. All models were trained on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The validation includes internal and external validation on the Australian Imaging and Lifestyle flagship study of Ageing (AIBL) and the Open Access Series of Imaging Studies (OASIS). DL and ML models reached similar classification performances. Regarding the brain regions, both types focus on different regions. The ML models focus on the inferior and middle temporal gyri, and the hippocampus, and amygdala regions previously associated with AD. The DL models focus on a wider range of regions including the optical chiasm, the entorhinal cortices, the left and right vessels, and the 4th ventricle which were partially associated with AD. One explanation for the differences is the input features (textures vs. volumes). Both types show reasonable similarity to a ground truth Voxel-Based Morphometry (VBM) analysis. Slightly higher similarities were measured for ML models.
Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Austrália , Aprendizado de MáquinaRESUMO
Automated medical image analysis systems often require large amounts of training data with high quality labels, which are difficult and time consuming to generate. This paper introduces Radiology Object in COntext version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions extracted from the PMC Open Access subset. It is an updated version of the ROCO dataset published in 2018, and adds 35,705 new images added to PMC since 2018. It further provides manually curated concepts for imaging modalities with additional anatomical and directional concepts for X-rays. The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical Caption 2023. The dataset is suitable for training image annotation models based on image-caption pairs, or for multi-label image classification using Unified Medical Language System (UMLS) concepts provided with each image. In addition, it can serve for pre-training of medical domain models, and evaluation of deep learning models for multi-task learning.
Assuntos
Imagem Multimodal , Radiologia , Humanos , Processamento de Imagem Assistida por Computador , Unified Medical Language SystemRESUMO
Monitoring the healing progress of diabetic foot ulcers is a challenging process. Accurate segmentation of foot ulcers can help podiatrists to quantitatively measure the size of wound regions to assist prediction of healing status. The main challenge in this field is the lack of publicly available manual delineation, which can be time consuming and laborious. Recently, methods based on deep learning have shown excellent results in automatic segmentation of medical images, however, they require large-scale datasets for training, and there is limited consensus on which methods perform the best. The 2022 Diabetic Foot Ulcers segmentation challenge was held in conjunction with the 2022 International Conference on Medical Image Computing and Computer Assisted Intervention, which sought to address these issues and stimulate progress in this research domain. A training set of 2000 images exhibiting diabetic foot ulcers was released with corresponding segmentation ground truth masks. Of the 72 (approved) requests from 47 countries, 26 teams used this data to develop fully automated systems to predict the true segmentation masks on a test set of 2000 images, with the corresponding ground truth segmentation masks kept private. Predictions from participating teams were scored and ranked according to their average Dice similarity coefficient of the ground truth masks and prediction masks. The winning team achieved a Dice of 0.7287 for diabetic foot ulcer segmentation. This challenge has now entered a live leaderboard stage where it serves as a challenging benchmark for diabetic foot ulcer segmentation.
Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/diagnóstico por imagem , Redes Neurais de Computação , Benchmarking , Processamento de Imagem Assistida por Computador/métodosRESUMO
BACKGROUND AND PURPOSE: According to the International Study of Unruptured Intracranial Aneurysms (ISUIA), anterior circulation (AC) aneurysms of <7 mm in diameter have a minimal risk of rupture. It is general experience, however, that anterior communicating artery (AcoA) aneurysms are frequent and mostly rupture at <7 mm. The aim of the study was to assess whether AcoA aneurysms behave differently from other AC aneurysms. METHODS: Information about 932 patients newly diagnosed with intracranial aneurysms between November 1, 2006, and March 31, 2012, including aneurysm status at diagnosis, its location, size, and risk factors, was collected during the multicenter @neurIST project. For each location or location and size subgroup, the odds ratio (OR) of aneurysms being ruptured at diagnosis was calculated. RESULTS: The OR for aneurysms to be discovered ruptured was significantly higher for AcoA (OR, 3.5 [95% confidence interval, 2.6-4.5]) and posterior circulation (OR, 2.6 [95% confidence interval, 2.1-3.3]) than for AC excluding AcoA (OR, 0.5 [95% confidence interval, 0.4-0.6]). Although a threshold of 7 mm has been suggested by ISUIA as a threshold for aggressive treatment, AcoA aneurysms <7 mm were more frequently found ruptured (OR, 2.0 [95% confidence interval, 1.3-3.0]) than AC aneurysms of 7 to 12 mm diameter as defined in ISUIA. CONCLUSIONS: We found that AC aneurysms are not a homogenous group. Aneurysms between 4 and 7 mm located in AcoA or distal anterior cerebral artery present similar rupture odds to posterior circulation aneurysms. Intervention should be recommended for this high-risk lesion group.
Assuntos
Aneurisma Roto/diagnóstico , Aneurisma Intracraniano/diagnóstico , Adulto , Idoso , Artéria Cerebral Anterior/fisiopatologia , Artéria Basilar/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Estudos de Coortes , Europa (Continente) , Feminino , Humanos , Aneurisma Intracraniano/classificação , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/fisiopatologia , Razão de Chances , Artéria Cerebral Posterior/fisiopatologia , Fatores de Risco , Artéria Vertebral/fisiopatologiaRESUMO
Since recent achievements of Artificial Intelligence (AI) have proven significant success and promising results throughout many fields of application during the last decade, AI has also become an essential part of medical research. The improving data availability, coupled with advances in high-performance computing and innovative algorithms, has increased AI's potential in various aspects. Because AI rapidly reshapes research and promotes the development of personalized clinical care, alongside its implementation arises an urgent need for a deep understanding of its inner workings, especially in high-stake domains. However, such systems can be highly complex and opaque, limiting the possibility of an immediate understanding of the system's decisions. Regarding the medical field, a high impact is attributed to these decisions as physicians and patients can only fully trust AI systems when reasonably communicating the origin of their results, simultaneously enabling the identification of errors and biases. Explainable AI (XAI), becoming an increasingly important field of research in recent years, promotes the formulation of explainability methods and provides a rationale allowing users to comprehend the results generated by AI systems. In this paper, we investigate the application of XAI in medical imaging, addressing a broad audience, especially healthcare professionals. The content focuses on definitions and taxonomies, standard methods and approaches, advantages, limitations, and examples representing the current state of research regarding XAI in medical imaging. This paper focuses on saliency-based XAI methods, where the explanation can be provided directly on the input data (image) and which naturally are of special importance in medical imaging.
Assuntos
Inteligência Artificial , Médicos , Humanos , Algoritmos , Pessoal de SaúdeRESUMO
Driven by recent advances in Artificial Intelligence (AI) and Computer Vision (CV), the implementation of AI systems in the medical domain increased correspondingly. This is especially true for the domain of medical imaging, in which the incorporation of AI aids several imaging-based tasks such as classification, segmentation, and registration. Moreover, AI reshapes medical research and contributes to the development of personalized clinical care. Consequently, alongside its extended implementation arises the need for an extensive understanding of AI systems and their inner workings, potentials, and limitations which the field of eXplainable AI (XAI) aims at. Because medical imaging is mainly associated with visual tasks, most explainability approaches incorporate saliency-based XAI methods. In contrast to that, in this article we would like to investigate the full potential of XAI methods in the field of medical imaging by specifically focusing on XAI techniques not relying on saliency, and providing diversified examples. We dedicate our investigation to a broad audience, but particularly healthcare professionals. Moreover, this work aims at establishing a common ground for cross-disciplinary understanding and exchange across disciplines between Deep Learning (DL) builders and healthcare professionals, which is why we aimed for a non-technical overview. Presented XAI methods are divided by a method's output representation into the following categories: Case-based explanations, textual explanations, and auxiliary explanations.
Assuntos
Inteligência Artificial , Pessoal de Saúde , HumanosRESUMO
The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool's knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes.
RESUMO
BACKGROUND: For selection and evaluation of potential biomarkers, inclusion of already published information is of utmost importance. In spite of significant advancements in text- and data-mining techniques, the vast knowledge space of biomarkers in biomedical text has remained unexplored. Existing named entity recognition approaches are not sufficiently selective for the retrieval of biomarker information from the literature. The purpose of this study was to identify textual features that enhance the effectiveness of biomarker information retrieval for different indication areas and diverse end user perspectives. METHODS: A biomarker terminology was created and further organized into six concept classes. Performance of this terminology was optimized towards balanced selectivity and specificity. The information retrieval performance using the biomarker terminology was evaluated based on various combinations of the terminology's six classes. Further validation of these results was performed on two independent corpora representing two different neurodegenerative diseases. RESULTS: The current state of the biomarker terminology contains 119 entity classes supported by 1890 different synonyms. The result of information retrieval shows improved retrieval rate of informative abstracts, which is achieved by including clinical management terms and evidence of gene/protein alterations (e.g. gene/protein expression status or certain polymorphisms) in combination with disease and gene name recognition. When additional filtering through other classes (e.g. diagnostic or prognostic methods) is applied, the typical high number of unspecific search results is significantly reduced. The evaluation results suggest that this approach enables the automated identification of biomarker information in the literature. A demo version of the search engine SCAIView, including the biomarker retrieval, is made available to the public through http://www.scaiview.com/scaiview-academia.html. CONCLUSIONS: The approach presented in this paper demonstrates that using a dedicated biomarker terminology for automated analysis of the scientific literature maybe helpful as an aid to finding biomarker information in text. Successful extraction of candidate biomarkers information from published resources can be considered as the first step towards developing novel hypotheses. These hypotheses will be valuable for the early decision-making in the drug discovery and development process.
Assuntos
Biomarcadores , Mineração de Dados , Terminologia como Assunto , Algoritmos , Humanos , Ferramenta de BuscaRESUMO
Clinical decision making regarding the treatment of unruptured intracranial aneurysms (IA) benefits from a better understanding of the interplay of IA rupture risk factors. Probabilistic graphical models can capture and graphically display potentially causal relationships in a mechanistic model. In this study, Bayesian networks (BN) were used to estimate IA rupture risk factors influences. From 1248 IA patient records, a retrospective, single-cohort, patient-level data set with 9 phenotypic rupture risk factors (n=790 complete entries) was extracted. Prior knowledge together with score-based structure learning algorithms estimated rupture risk factor interactions. Two approaches, discrete and mixed-data additive BN, were implemented and compared. The corresponding graphs were learned using non-parametric bootstrapping and Markov chain Monte Carlo, respectively. The BN models were compared to standard descriptive and regression analysis methods. Correlation and regression analyses showed significant associations between IA rupture status and patient's sex, familial history of IA, age at IA diagnosis, IA location, IA size and IA multiplicity. BN models confirmed the findings from standard analysis methods. More precisely, they directly associated IA rupture with familial history of IA, IA size and IA location in a discrete framework. Additive model formulation, enabling mixed-data, found that IA rupture was directly influenced by patient age at diagnosis besides additional mutual influences of the risk factors. This study establishes a data-driven methodology for mechanistic disease modelling of IA rupture and shows the potential to direct clinical decision-making in IA treatment, allowing personalised prediction.
Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Teorema de Bayes , Humanos , Estudos Retrospectivos , Fatores de RiscoRESUMO
Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making.
RESUMO
BACKGROUND: Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. RESULTS: This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. CONCLUSIONS: Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus.
Assuntos
Bases de Dados Genéticas , Armazenamento e Recuperação da Informação , Mutação , Polimorfismo de Nucleotídeo Único , Doença/genética , Variação Genética , Genômica , HumanosRESUMO
BACKGROUND: For the recruitment and monitoring of subjects for therapy studies, it is important to predict whether mild cognitive impaired (MCI) subjects will prospectively develop Alzheimer's disease (AD). Machine learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to high variability in disease patterns. Further variability originates from multicentric study designs, varying acquisition protocols, and errors in the preprocessing of magnetic resonance imaging (MRI) scans. The high variability makes the differentiation between signal and noise difficult and may lead to overfitting. This article examines whether an automatic and fair data valuation method based on Shapley values can identify the most informative subjects to improve ML classification. METHODS: An ML workflow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workflow included volumetric MRI feature extraction, feature selection, sample selection using Data Shapley, random forest (RF), and eXtreme Gradient Boosting (XGBoost) for model training as well as Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. RESULTS: The RF models, which excluded 134 of the 467 training subjects based on their RF Data Shapley values, outperformed the base models that reached a mean accuracy of 62.64% by 5.76% (3.61 percentage points) for the independent ADNI test set. The XGBoost base models reached a mean accuracy of 60.00% for the AIBL data set. The exclusion of those 133 subjects with the smallest RF Data Shapley values could improve the classification accuracy by 2.98% (1.79 percentage points). The cutoff values were calculated using an independent validation set. CONCLUSION: The Data Shapley method was able to improve the mean accuracies for the test sets. The most informative subjects were associated with the number of ApolipoproteinE ε4 (ApoE ε4) alleles, cognitive test results, and volumetric MRI measurements.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Austrália , Disfunção Cognitiva/diagnóstico por imagem , Análise de Dados , Humanos , Aprendizado de Máquina , Imageamento por Ressonância MagnéticaRESUMO
There has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarizes the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R-CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhance the F1-Score but not the mAP.
Assuntos
Aprendizado Profundo , Diabetes Mellitus , Pé Diabético , Algoritmos , Pé Diabético/diagnóstico , Humanos , Projetos de PesquisaRESUMO
Pediatric endocrinologists regularly order radiographs of the left hand to estimate the degree of bone maturation in order to assess their patients for advanced or delayed growth, physical development, and to monitor consecutive therapeutic measures. The reading of such images is a labor-intensive task that requires a lot of experience and is normally performed by highly trained experts like pediatric radiologists. In this paper we build an automated system for pediatric bone age estimation that mimics and accelerates the workflow of the radiologist without breaking it. The complete system is based on two neural network based models: on the one hand a detector network, which identifies the ossification areas, on the other hand gender and region specific regression networks, which estimate the bone age from the detected areas. With a small annotated dataset an ossification area detection network can be trained, which is stable enough to work as part of a multi-stage approach. Furthermore, our system achieves competitive results on the RSNA Pediatric Bone Age Challenge test set with an average error of 4.56 months. In contrast to other approaches, especially purely encoder-based architectures, our two-stage approach provides self-explanatory results. By detecting and evaluating the individual ossification areas, thus simulating the workflow of the Tanner-Whitehouse procedure, the results are interpretable for a radiologist.