Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Microbiol ; 24(1): 143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664628

RESUMO

BACKGROUND: Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS: We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION: We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.


Assuntos
Proteínas de Bactérias , Galinhas , Desinfecção , Escherichia coli , Fazendas , beta-Lactamases , Animais , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Desinfecção/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Antibacterianos/farmacologia , Filogenia , Plasmídeos/genética , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma
2.
BMC Microbiol ; 23(1): 209, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543585

RESUMO

BACKGROUND: Effective strategies are urgently needed to control Campylobacteriosis, one of the most important foodborne gastrointestinal diseases worldwide. Administering bacteriophages (phages) is under evaluation as a possible intervention strategy in primary poultry production to reduce the public health risk of human infection. A major challenge is the translation of results from small-scale animal studies to large broiler flocks. In this study, the in vitro lytic activity of 18 Campylobacter-specific group II phages and 19 group III phages were examined singly, and in different combinations from the same group and from both groups using a planktonic killing assay. Based on these results, a combination of phage NCTC 12,673 (group III) and vB_CcM-LmqsCPL1/1 (group II) was selected for in vivo application in a seeder bird model to study its effectiveness under conditions as close as possible to field conditions. One hundred eighty Ross 308 broiler chickens were divided into a control and a treatment group. Ten days post hatch, seeder birds were orally inoculated with the C. jejuni target strain. Phages were administered via drinking water at a total concentration of 107 PFU/mL four, three, and two days before necropsy. RESULTS: Combining group II and group III phages resulted in significantly higher in vitro growth inhibition against the C. jejuni target strain BfR-CA-14,430 than single application or combinations of phages from the same group. The results of the animal trial showed that the application of the two phages significantly reduced Campylobacter counts in cloacal swabs. At necropsy, Campylobacter counts in colonic content of the treatment group were significantly reduced by 2 log10 units compared to the control group. CONCLUSIONS: We demonstrated that combining phages of groups II and III results in significantly increased lytic activities. The in vitro results were successfully translated into practical application in a study design close to field conditions, providing new data to apply phages in conventional broiler flocks in the future. Phage application reduced the fecal Campylobacter excretion and Campylobacter concentrations in the colon of broilers.


Assuntos
Bacteriófagos , Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Doenças Transmitidas por Alimentos , Doenças das Aves Domésticas , Animais , Humanos , Bacteriófagos/fisiologia , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Galinhas , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle
3.
Curr Top Microbiol Immunol ; 431: 103-125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33620650

RESUMO

Although extensive research has been carried out to describe the transmission pathways of Campylobacter entering livestock farms, the role of livestock farms as source of Campylobacter contamination of the environment is still poorly investigated. It is assumed that Campylobacter-positive livestock farms contribute to an environmental contamination, depending on the animal species on the farm, their Campylobacter status, the housing system, manure management as well as their general farm hygienic and biosecurity management. Different emission sources, like manure, air, water, insects and rodents as well as personnel, including equipment and vehicles, contribute to Campylobacter emission into the environment. Even though Campylobacter are rather fastidious bacteria, they are able to survive in the environment for even a longer period of time, when environmental conditions enable survival in specific niches. We conclude that a significant reduction of Campylobacter emission in the environment can be successfully achieved if various intervention strategies, depending on the farm type, are applied simultaneously, including proper general and personal hygiene, establishing of hygienic barriers, insect controls, manure management and hygienization of stables, barns and exhaust air.


Assuntos
Infecções por Campylobacter , Campylobacter , Animais , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Galinhas , Fazendas
4.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795309

RESUMO

Antimicrobial resistance through extended-spectrum beta-lactamases (ESBLs) and transferable (plasmid-encoded) cephamycinases (pAmpCs) represents an increasing problem in human and veterinary medicine. The presence of ESBL-/pAmpC-producing commensal enterobacteria in farm animals, such as broiler chickens, is considered one possible source of food contamination and could therefore also be relevant for human colonization. Studies on transmission routes along the broiler production chain showed that 1-day-old hatchlings are already affected. In this study, ESBL-/pAmpC-positive broiler parent flocks and their corresponding eggs, as well as various environmental and air samples from the hatchery, were analyzed. The eggs were investigated concerning ESBL-/pAmpC-producing enterobacteria on the outer eggshell surface (before/after disinfection), the inner eggshell surface, and the egg content. Isolates were analyzed concerning their species, their phylogroup in the case of Escherichia coli strains, the respective resistance genes, and the phenotypical antibiotic resistance. Of the tested eggs, 0.9% (n = 560) were contaminated on their outer shell surface. Further analyses using pulsed-field gel electrophoresis showed a relationship of these strains to those isolated from the corresponding parent flocks, which demonstrates a pseudo-vertical transfer of ESBL-/pAmpC-producing enterobacteria into the hatchery. Resistant enterobacteria were also found in environmental samples from the hatchery, such as dust or surfaces which could pose as a possible contamination source for the hatchlings. All 1-day-old chicks tested negative directly after hatching. The results show a possible entry of ESBL-/pAmpC-producing enterobacteria from the parent flocks into the hatchery; however, the impact of the hatchery on colonization of the hatchlings seems to be low. IMPORTANCE: ESBL-/pAmpC-producing enterobacteria occur frequently in broiler-fattening farms. Recent studies investigated the prevalence and possible transmission route of these bacteria in the broiler production chain. It seemed very likely that the hatcheries play an important role in transmission and/or contamination events. There are only few data on transmission investigations from a grandparent or parent flock to their offspring. However, reliable data on direct or indirect vertical transmission events in the hatchery are not available. Therefore, we conducted our study and intensively investigated the broiler hatching eggs from ESBL-/pAmpC-positive broiler parent flocks as well as the hatchlings and the environment of the hatchery.


Assuntos
Cefamicinas/metabolismo , Infecções por Enterobacteriaceae/veterinária , Escherichia coli/genética , Escherichia/genética , Transmissão Vertical de Doenças Infecciosas/veterinária , Doenças das Aves Domésticas/transmissão , beta-Lactamases/genética , Animais , Animais Domésticos , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Ovos/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/transmissão , Escherichia/efeitos dos fármacos , Escherichia/enzimologia , Escherichia/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/veterinária , Fazendas , Humanos , Plasmídeos , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/biossíntese
5.
BMC Vet Res ; 11: 265, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472561

RESUMO

BACKGROUND: Healthy farm animals have been found to act as a reservoir of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (E. coli). Therefore, the objective of the study was to determine the input of antimicrobial active ceftiofur metabolites in the stable via faeces and urine after intramuscular administration of the drug to pigs and the elucidation of the Escherichia coli ESBL resistance pattern of treated and untreated pigs housed in the same barn during therapy. METHODS: For determination of the minimal inhibitory concentration (MIC) the method of microdilutionaccording to the recommended procedure of the Clinical and Laboratory Standards Institute was used. Inaddition to that, a qualitative determination was performed by agar dilution. Unsusceptible E. coli speciesselected via agar dilution with cefotaxime were confirmed by MALDI-TOF and ESBL encoding genes wereidentified by PCR. The amounts of ceftiofur measured as desfuroylceftiofur (DFC) in the different probes (plasma, urine, faeces and dust) were analysed by UPLC-MS/MS. RESULTS: In a first experiment two groups of pigs (6 animals per group) were housed in the same barn in two separated boxes. One group (group B) were treated with ceftiofur according to the licence (3 mg/kg administered intramuscularly (i.m.) on three consecutive days, day 1-3). During a second treatment period (day 29-31) an increased rate of ESBL resistant E. coli was detectable in these treated pigs and in the air of the stable. Moreover, the second group of animals (group A) formerly untreated but housed for the whole period in the same stable as the treated animals revealed increased resistance rates during their first treatment (day 45-47) with ceftiofur. In order to investigate the environmental input of ceftiofur during therapy and to simulate oral uptake of ceftiofur residues from the air of the stable a second set of experiments were performed. Pigs (6 animals) were treated with an interval of 2 weeks for 3 days with different doses of ceftiofur (3 mg/kg, 1 mg/kg and 0.3 mg/kg i.m.) as well as with 3 mg/kg per os) and the renal and biliary excretion of ceftiofur as its active metabolite were measured in comparison to the plasma levels. In addition to that, probes of the sedimentation dust and the air of the stable were analysed for drug residues. CONCLUSION: The present study shows that treatment of several animals in a stable with ceftiofur influences the resistance pattern of intestinal Escherichia coli of the treated as well as untreated animals housed in the same stable. During therapy with the drug which was administered by injection according to the licence we detected nameable amounts of ceftiofur and its active metabolites in the dust and air of the stable.


Assuntos
Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/prevenção & controle , Animais , Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Cefalosporinas/análise , Cefalosporinas/sangue , Cefalosporinas/urina , Suscetibilidade a Doenças/veterinária , Farmacorresistência Bacteriana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Fezes/química , Feminino , Abrigo para Animais , Injeções Intramusculares/veterinária , Testes de Sensibilidade Microbiana , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
6.
Int J Med Microbiol ; 304(7): 805-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25213631

RESUMO

Escherichia (E.) coli producing extended-spectrum beta-lactamases (ESBLs) are an increasing problem for public health. The success of ESBLs may be due to spread of ESBL-producing bacterial clones, transfer of ESBL gene-carrying plasmids or exchange of ESBL encoding genes on mobile elements. This makes it difficult to identify transmission routes and sources for ESBL-producing bacteria. The objectives of this study were to compare the distribution of genotypic and phenotypic properties of E. coli isolates from different animal and human sources collected in studies in the scope of the national research project RESET. ESBL-producing E. coli from two longitudinal and four cross-sectional studies in broiler, swine and cattle farms, a cross-sectional and a case-control study in humans and diagnostic isolates from humans and animals were used. In the RESET consortium, all laboratories followed harmonized methodologies for antimicrobial susceptibility testing, confirmation of the ESBL phenotype, specific PCR assays for the detection of bla(TEM), bla(CTX), and bla(SHV) genes and sequence analysis of the complete ESBL gene as well as a multiplex PCR for the detection of the four major phylogenetic groups of E. coli. Most ESBL genes were found in both, human and non-human populations but quantitative differences for distinct ESBL-types were detectable. The enzymes CTX-M-1 (63.3% of all animal isolates, 29.3% of all human isolates), CTX-M-15 (17.7% vs. 48.0%) and CTX-M-14 (5.3% vs. 8.7%) were the most common ones. More than 70% of the animal isolates and more than 50% of the human isolates contained the broadly distributed ESBL genes bla(CTX-M-1), bla(CTX-M-15), or the combinations bla(SHV-12)+bla(TEM) or bla(CTX-M-1)+bla(TEM). While the majority of animal isolates carried bla(CTX-M-1) (37.5%) or the combination bla(CTX-M-1)+bla(TEM) (25.8%), this was the case for only 16.7% and 12.6%, respectively, of the human isolates. In contrast, 28.2% of the human isolates carried bla(CTX-M-15) compared to 10.8% of the animal isolates. When grouping data by ESBL types and phylogroups bla(CTX-M-1) genes, mostly combined with phylogroup A or B1, were detected frequently in all settings. In contrast, bla(CTX-M-15) genes common in human and animal populations were mainly combined with phylogroup A, but not with the more virulent phylogroup B2 with the exception of companion animals, where a few isolates were detectable. When E. coli subtype definition included ESBL types, phylogenetic grouping and antimicrobial susceptibility data, the proportion of isolates allocated to common clusters was markedly reduced. Nevertheless, relevant proportions of same subtypes were detected in isolates from the human and livestock and companion animal populations included in this study, suggesting exchange of bacteria or bacterial genes between these populations or a common reservoir. In addition, these results clearly showed that there is some similarity between ESBL genes, and bacterial properties in isolates from the different populations. Finally, our current approach provides good insight into common and population-specific clusters, which can be used as a basis for the selection of ESBL-producing isolates from interesting clusters for further detailed characterizations, e.g. by whole genome sequencing.


Assuntos
Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/enzimologia , beta-Lactamases/análise , beta-Lactamases/classificação , Animais , Bovinos , Galinhas , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Suínos , beta-Lactamases/genética
7.
PLoS One ; 19(1): e0297193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277366

RESUMO

Despite the variety of pathogens that are transmitted via the airborne route, few data are available on factors that influence the tenacity of airborne pathogens. In order to better understand and thus control airborne infections, knowledge of these factors is important. In this study, three agents, S. aureus, G. stearothermophilus spores and the MS2 bacteriophage, were aerosolized at relative humidities (RH) varying between 30% and 70%. Air samples were then analyzed to determine the concentration of the agents. S. aureus was found to have significantly lower survival rate in the aerosol at RH above 60%. It showed the lowest recovery rates of the three agents, ranging from 0.13% at approximately 70% RH to 4.39% at 30% RH. G. stearothermophilus spores showed the highest tenacity with recovery rates ranging from 41.85% to 61.73% with little effect of RH. For the MS2 bacteriophage, a significantly lower tenacity in the aerosol was observed with a recovery rate of 4.24% for intermediate RH of approximately 50%. The results of this study confirm the significant influence of the RH on the tenacity of airborne microorganisms depending on the specific agent. These data show that the behavior of microorganism in bioaerosols is varies under different environmental conditions.


Assuntos
Esporos Bacterianos , Staphylococcus aureus , Umidade , Microbiologia do Ar , Aerossóis/farmacologia
8.
Sci Rep ; 13(1): 22012, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086913

RESUMO

Enveloped respiratory viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can be transmitted through aerosols and contact with contaminated surfaces. The stability of these viruses outside the host significantly impacts their transmission dynamics and the spread of diseases. In this study, we investigated the tenacity of Feline Coronavirus (FCoV) in aerosols and on surfaces under varying environmental conditions. We found that airborne FCoV showed different stability depending on relative humidity (RH), with higher stability observed at low and high RH. Medium RH conditions (50-60%) were associated with increased loss of infectivity. Furthermore, FCoV remained infectious in the airborne state over 7 h. On stainless-steel surfaces, FCoV remained infectious for several months, with stability influenced by organic material and temperature. The presence of yeast extract and a temperature of 4 °C resulted in the longest maintenance of infectivity, with a 5 log10 reduction of the initial concentration after 167 days. At 20 °C, this reduction was achieved after 19 days. These findings highlight the potential risk of aerosol and contact transmission of respiratory viruses, especially in enclosed environments, over extended periods. Studying surrogate viruses like FCoV provides important insights into the behavior of zoonotic viruses like SARS-CoV-2 in the environment.


Assuntos
Coronavirus Felino , Animais , Gatos , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Aerossóis
9.
Microorganisms ; 11(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37894150

RESUMO

Campylobacteriosis cases in humans are of global concern, with high prevalence rates in the poultry reservoir considered the most important source of infection. Research findings show Campylobacters' ability to enter a viable but non-culturable (VBNC) state, remaining "viable" but unable to grow on culture media. We explored the persistence of VBNC states in specific environments, particularly at broiler farms, as this state may lead to an underestimation of the present Campylobacter prevalence. For VBNC detection, a propidium monoazide PMA-dye viability qPCR (v-qPCR) was used in combination with cultivation methods. We examined samples collected from broiler farm barns and their surroundings, as well as chicken manure from experimental pens. In addition, the tenacity of culturable and VBNC-Campylobacter was studied in vitro in soil and water. In a total of three visits, Campylobacter was not detected either culturally or by v-qPCR (no Campylobacter DNA) in the environment of the broiler farms. In four visits, however, VBNC-Campylobacter were detected both inside and outside the barns. The overall prevalence in environmental samples was 15.9% for VBNC-Campylobacter, 62.2% for Campylobacter DNA, and 1.2% for culturable C. jejuni. In the experimental pens, no cultivable C. jejuni was detected in chicken manure after 24 h. Strikingly, "VBNC-Campylobacter" persisted even after 72 h. "VBNC-Campylobacter" were confirmed in barn surroundings and naturally contaminated chicken manure. Laboratory studies revealed that VBNC-Campylobacter can remain intact in soil for up to 28 days and in water for at least 63 days, depending on environmental conditions.

10.
Front Vet Sci ; 10: 1152246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275609

RESUMO

Introduction: The association between antibiotic use and the occurrence of resistant bacteria is a global health problem and is subject to enormous efforts at national and international levels. Within the scope of the study "KAbMon", the resistance situation as well as the use of antibiotics in calf rearing farms in Germany was investigated. We hypothesized that the levels of resistance are associated with certain calf keeping farm types, such as pre-weaned calf farms, animal groups, and therapy frequency. Methods: In total, 95 calf keeping farms were visited between October 2019 and April 2021. At each farm, up to three pooled fecal samples (10 freshly released feces each) were collected. One sample was taken in the youngest calf group, another in the oldest calf group, and one in the hospital box, if available. Escherichia coli was isolated from non-selective MacConkey agar. The therapy frequency reflects the average number of treatment days per calf in a half-year, while the resistance score is the sum of the relative minimum inhibitory concentration per substance over all 10 tested substances. Results: The 1781 isolates from 178 samples showed high resistance rates against sulfamethoxazole (82%), tetracycline (49%), and ampicillin (40%). High resistance scores were mainly found in pre-weaned calf farms (purchasing calves from 2 weeks of life) and in the youngest animals. The therapy frequency showed an almost linear relationship with the resistance scores, and the age at purchase was negatively related to the resistance score. Discussion: The high use of antimicrobials of young calves might be associated with a high risk for infectious diseases and might indicate that the current system of crowding 14-day-old calves from different farms in one group is not optimal. Further efforts are necessary to educate and motivate the calf keepers to ensure highest levels of hygiene and management as well as animal welfare conditions and to increase animal health.

11.
Appl Environ Microbiol ; 78(2): 541-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081568

RESUMO

In this study we investigated the kinetics of colonization, the host susceptibility and transmissibility of methicillin-resistant Staphylococcus aureus (MRSA) after nasal treatment of pigs with three different MRSA strains of distinctive clonal lineages (sequence type 398 [ST398], ST8, and ST9), and origin in weaning piglets. The colonization dose of 5.0 × 10(8) CFU/animal was determined in preliminary animal studies. A total of 57 piglets were randomly divided into four test groups and one control group. Each of three test groups was inoculated intranasally with either MRSA ST8, MRSA ST9, or MRSA ST398. The fourth group was a mixture of animals inoculated with MRSA ST398 and noninoculated "sentinel" animals. Clinical signs, the nasal, conjunctival, and skin colonization of MRSA, fecal excretion, and organ distribution of MRSA, as well as different environmental samples were examined. After nasal inoculation with MRSA piglets of all four test groups showed no clinical signs of an MRSA infection. MRSA was present on the nasal mucosa, skin, and conjunctiva in all four test groups, including sentinel animals. Likewise, fecal excretion and internal colonization of MRSA ST8, ST9, and ST398 could be shown in each group. However, fecal excretion and the colonization rate of the nasal mucosa with MRSA ST9 were significantly lower in the first days after infection than in test groups infected with ST8 and ST398. The results of this study suggest differences in colonization potential of the different MRSA types in pigs. Furthermore, colonization of lymph nodes (e.g., the ileocecal lymph node) with MRSA of the clonal lineage ST398 was demonstrated.


Assuntos
Portador Sadio/veterinária , Predisposição Genética para Doença , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/veterinária , Doenças dos Suínos/microbiologia , Animais , Portador Sadio/microbiologia , Túnica Conjuntiva/microbiologia , Fezes/microbiologia , Genótipo , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Tipagem Molecular , Mucosa Nasal/microbiologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Suínos
12.
Appl Environ Microbiol ; 78(16): 5666-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685139

RESUMO

During 1 year, samples were taken on 4 days, one sample in each season, from pigs, the floor, and the air inside pig barns and from the ambient air and soil at different distances outside six commercial livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA)-positive pig barns in the north and east of Germany. LA-MRSA was isolated from animals, floor, and air samples in the barn, showing a range of airborne LA-MRSA between 6 and 3,619 CFU/m(3) (median, 151 CFU/m(3)). Downwind of the barns, LA-MRSA was detected in low concentrations (11 to 14 CFU/m(3)) at distances of 50 and 150 m; all upwind air samples were negative. In contrast, LA-MRSA was found on soil surfaces at distances of 50, 150, and 300 m downwind from all barns, but no statistical differences could be observed between the proportions of positive soil surface samples at the three different distances. Upwind of the barns, positive soil surface samples were found only sporadically. Significantly more positive LA-MRSA samples were found in summer than in the other seasons both in air and soil samples upwind and downwind of the pig barns. spa typing was used to confirm the identity of LA-MRSA types found inside and outside the barns. The results show that there is regular airborne LA-MRSA transmission and deposition, which are strongly influenced by wind direction and season, of up to at least 300 m around positive pig barns. The described boot sampling method seems suitable to characterize the contamination of the vicinity of LA-MRSA-positive pig barns by the airborne route.


Assuntos
Microbiologia do Ar , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Microbiologia do Solo , Suínos/microbiologia , Animais , Carga Bacteriana , Genótipo , Alemanha , Abrigo para Animais , Estudos Longitudinais , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Tipagem Molecular , Estações do Ano , Vento
13.
Vet Sci ; 9(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448680

RESUMO

Diminishing Campylobacter prevalence in poultry flocks has proven to be extremely challenging. To date, efficacious control measures to reduce Campylobacter prevalence are still missing. A potential approach to control Campylobacter in modern poultry productions is to occupy its niche in the mucosal layer by administering live intestinal microbiota from adult chickens to dayold-chicks (competitive exclusion (CE)). Therefore, this in vivo study investigates the efficacy of a complex CE culture to reduce Campylobacter (C.) jejuni colonization in broiler chickens. For this purpose, the complex CE culture was applied twice: once by spray application to day-old chicks immediately after hatching (on the 1st day of life) and subsequently by an additional application via drinking water on the 25th day of life. We observed a consistent and statistically significant reduction of C. jejuni counts in cloacal swabs throughout the entire fattening period. At the end of the trial after necropsy (at 33 days of age), C. jejuni cecal counts also showed a statistically significant decrease of 1 log10 MPN/g compared to the control group. Likewise, colon counts were reduced by 2.0 log10 MPN/g. These results suggest that CE cultures can be considered a practically relevant control strategy to reduce C. jejuni colonization in broiler chickens on poultry farms.

14.
Poult Sci ; 101(12): 102209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283144

RESUMO

Application of organic acids via feed or drinking water is under discussion as a possible intervention strategy to reduce Campylobacter (C.) load in primary poultry production. A previous in vitro study showed that reduced concentrations of sorbic acid, benzoic acid, propionic acid, and acetic acid were required for antibacterial activity against Campylobacter when using a mixture of these 4 acids compared to when using the single acids. The present study aimed at determining the antibacterial efficiency of this combination in vivo as a drinking water additive for reducing shedding and intestinal C. jejuni colonization in broilers. Furthermore, we assessed whether the inoculated C. jejuni strain BfR-CA-14430 adapted in vivo to the applied organic acids. Results of this study showed that adding the organic acids consistently reduced Campylobacter loads in cloacal swabs. While significant reductions were observed within the entire study period, a maximum 2 log reduction occurred at an age of 18 d. However, after dissection at the end of the trial, no significant differences were detected in Campylobacter loads of cecal and colon contents compared to the control group. Susceptibility testing of re-isolates from cloacal swabs and cecal content revealed equal minimum inhibitory concentration (MIC) values compared to the inoculated test strain, suggesting that C. jejuni remained susceptible throughout the trial.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Água Potável , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia
15.
Front Microbiol ; 13: 982693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312983

RESUMO

Broiler meat is widely known as an important source of foodborne Campylobacter jejuni and Campylobacter coli infections in humans. In this study, we thoroughly investigated transmission pathways that may contribute to possible Campylobacter contamination inside and outside broiler houses. For this purpose we carried out a comprehensive longitudinal sampling approach, using a semi-quantitative cultivation method to identify and quantify transmissions and reservoirs of Campylobacter spp.. Three german broiler farms in Brandenburg and their surrounding areas were intensively sampled, from April 2018 until September 2020. Consecutive fattening cycles and intervening downtimes after cleaning and disinfection were systematically sampled in summer and winter. To display the potential phylogeny of barn and environmental isolates, whole genome sequencing (WGS) and bioinformatic analyses were performed. Results obtained in this study showed very high Campylobacter prevalence in 51/76 pooled feces (67.1%) and 49/76 boot swabs (64.5%). Average counts between 6.4 to 8.36 log10MPN/g were detected in pooled feces. In addition, levels of 4.7 and 4.1 log10MPN/g were detected in boot swabs and litter, respectively. Samples from the barn interior showed mean Campyloacter values in swabs from drinkers 2.6 log10MPN/g, walls 2.0 log10MPN/g, troughs 1.7 log10MPN/g, boards 1.6 log10MPN/g, ventilations 0.9 log10MPN/g and 0.7 log10MPN/g for air samples. However, Campylobacter was detected only in 7/456 (1.5%) of the environmental samples (water bodies, puddles or water-filled wheel tracks; average of 0.6 log10MPN/g). Furthermore, WGS showed recurring Campylobacter genotypes over several consecutive fattening periods, indicating that Campylobacter genotypes persist in the environment during downtime periods. However, after cleaning and disinfection of the barns, we were unable to identify potential sources in the broiler houses. Interestingly, alternating Campylobacter genotypes were observed after each fattening period, also indicating sources of contamination from the wider environment outside the farm. Therefore, the results of this study suggest that a potential risk of Campylobacter transmission may originate from present environmental sources (litter and water reservoirs). However, the sources of Campylobacter transmission may vary depending on the operation and farm environmental conditions.

16.
PLoS One ; 16(1): e0245224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411808

RESUMO

The colonization of broilers with extended-spectrum ß-lactamase- (ESBL-) and plasmid-mediated AmpC ß-lactamase- (pAmpC-) producing Enterobacteriaceae has been extensively studied. However, only limited data on intervention strategies to reduce the colonization throughout the fattening period are available. To investigate practically relevant management measures for their potential to reduce colonization, a recently published seeder-bird colonization model was used. Groups of 90 broilers (breed Ross 308) were housed in pens under conventional conditions (stocking of 39 kg/m2, no enrichment, water and feed ad libitum). Tested measures were investigated in separate trials and included (I) an increased amount of litter in the pen, (II) the reduction of stocking density to 25 kg/m2, and (III) the use of an alternative broiler breed (Rowan x Ranger). One-fifth of ESBL- and pAmpC- negative broilers (n = 18) per group were orally co-inoculated with two E. coli strains on the third day of the trial (seeder). One CTX-M-15-positive E. coli strain (ST410) and one CMY-2 and mcr-1-positive E. coli strain (ST10) were simultaneously administered in a dosage of 102 cfu. Colonization of all seeders and 28 non-inoculated broilers (sentinel) was assessed via cloacal swabs during the trials and a final necropsy at a target weight of two kilograms (= d 36 (control, I-II), d 47 (III)). None of the applied intervention measures reduced the colonization of the broilers with both the ESBL- and the pAmpC- producing E. coli strains. A strain-dependent reduction of colonization for the ESBL- producing E. coli strain of ST410 by 2 log units was apparent by the reduction of stocking density to 25 kg/m2. Consequently, the tested management measures had a negligible effect on the ESBL- and pAmpC- colonization of broilers. Therefore, intervention strategies should focus on the prevention of ESBL- and pAmpC- colonization, rather than an attempt to reduce an already existing colonization.


Assuntos
Galinhas/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli/patogenicidade , Microbioma Gastrointestinal , Animais , Escherichia coli/enzimologia , Infecções por Escherichia coli/veterinária , beta-Lactamases/genética , beta-Lactamases/metabolismo
17.
Nanomaterials (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443918

RESUMO

Within the current SARS-CoV-2 pandemic, personal protective equipment, including face masks, is one important tool to interrupt virus transmission chains within the community. In this context, the quality of different face masks is frequently discussed and should, therefore, be evaluated. In this study, nanofleece textiles with a particle filtering effect and textiles with a self-disinfecting treatment were examined, which may be combined in face masks. Firstly, newly developed nanofleece textiles were tested regarding their filtration efficiency against airborne coronavirus, using feline coronavirus (FCoV) as a surrogate for SARS-CoV-2. The tested nanofleece textiles showed filtration efficiencies of over 95% against FCoV when used as a double layer and were, therefore, almost on par with the FFP-2 mask material, which was used as a reference. Secondly, eight treated, self-disinfecting textiles, which may increase the safety in the handling of potentially contaminated masks, were tested against SARS-CoV-2. Three out of eight treated textiles showed significant activity against SARS-CoV-2 and achieved about three LOG10 (99.9%) of virus titer reduction after twelve hours of incubation. Since all possible transmission paths of SARS-CoV-2, as well as the minimal infection doses, remain unknown, both investigated approaches seem to be useful tools to lower the virus spread within the community.

18.
Eur J Microbiol Immunol (Bp) ; 10(1): 1-10, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363033

RESUMO

Colonized vertebrates including humans and pigs are to date the main reservoirs of livestock-associated Methicillin-resistant Staphylococcus aureus (LA-MRSA). Currently, the mechanisms underlying colonization of pigs are not fully understood. We investigated the influence of piglet pre-immune status on airborne MRSA colonization. Three groups of MRSA-negative piglets were primed and exposed to airborne LA-MRSA (104 colony forming units (cfu)/m3) in an aerosol chamber for 24 h. One group was treated intramuscularly with dexamethasone (1 mg/kg body weight) to imitate weaning stress. The second group was exposed to bacterial endotoxin containing MRSA aerosol. Both conditions play a role in the development of multifactorial diseases and may promote MRSA colonization success. The third group served as control. The piglets' MRSA status was monitored for 21 days via swab samples. At necropsy, specific tissues and organs were analyzed. Blood was collected to examine specific immunological parameters. The duration of MRSA colonization was not extended in both treated groups compared to the control group, indicating the two immune-status influencing factors do not promote MRSA colonization. Blood sample analysis confirmed a mild dexamethasone-induced immune suppression and typical endotoxin-related changes in peripheral blood. Of note, the low-dose dexamethasone treatment showed a trend of increased MRSA clearance.

19.
J Virol Methods ; 282: 113856, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32198027

RESUMO

The bactericidal properties of bacteriophages have been used almost since the moment of the discovery of bacterial viruses. In the light of the rapidly growing number of antibiotic-resistant bacteria, phage therapy is considered one of the most promising alternatives to classical treatment. Phage amplification is one of the most common procedures of working with phages, and high-titer preparations are beneficial at the experimental stage of studies as well as in practice. The objective of this study was to compare five commonly applied methods of phage amplification: (i) pooled plaques method, (ii) the plate wash method, (iii) the agar culture method, (iv) the two-stage culture method, and (v) in liquid culture. All methods were tested for fifteen different phages. The results described herein indicate that there is no optimal, universal method for phage amplification, and the most effective method has to be established individually for each phage.

20.
Front Microbiol ; 10: 2124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572330

RESUMO

Extended-spectrum beta-lactamase- (ESBL-) and AmpC beta-lactamase- (AmpC-) producing Enterobacteriaceae pose a risk for both human and animal health. For livestock, highest prevalences have been reported in broiler chickens, which are therefore considered as a reservoir of multidrug-resistant bacteria. The possibility of transfer to humans either by a close contact to colonized broiler flocks or through contaminated retail meat results in the necessity to develop intervention measures for the entire broiler production chain. In this regard, a basic understanding of the colonization process is mandatory including the determination of the minimal bacterial load leading to a persistent colonization of broiler chickens. Therefore, we conducted a bivalent broiler colonization study close to real farming conditions without applying any antimicrobial selection pressure. ESBL- and AmpC- negative broiler chickens (Ross 308) were co- colonized on their third day of life with two strains: one CTX-M-15-producing Escherichia coli-ST410 and one CMY-2/mcr-1-positive E. coli-ST10. Colonization was assessed by cloacal swabs over the period of the trial, starting 24 h post inoculation. During the final necropsy, the contents of crop, jejunum, cecum, and colon were quantified for the occurrence of both bacterial strains. To define the minimal oral colonization dosage 104 to 101 colony forming units (cfu) were orally inoculated to four separately housed broiler groups (each n = 19, all animals inoculated) and a dosage of already 101 cfu E. coli led to a persistent colonization of all animals of the group after 3 days. To assure stable colonization, however, a dosage of 102 cfu E. coli was chosen for the subsequent seeder-bird trial. In the seeder-bird trial one fifth of the animals (seeder, n = 4) were orally inoculated and kept together with the non-inoculated animals (sentinel, n = 16) to mimic the route of natural infection. After 35 days of trial, all animals were colonized with both E. coli strains. Given the low colonization dosage and the low seeder/sentinel ratio, the rapid spread of ESBL- and AmpC- producing Enterobacteriaceae in conventional broiler farms currently seems inevitably resulting in an urgent need for the development of intervention strategies to reduce colonization of broilers during production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa