Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 521(7550): 65-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25951285

RESUMO

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

3.
J Contam Hydrol ; 267: 104445, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39423551

RESUMO

Activated carbon (AC) sediment amendment is an in-situ remediation technology in which the applied AC immobilizes organic contaminant flux from sediments, thereby reducing contaminant bioavailability and associated risks. While various studies have demonstrated the feasibility of in-situ AC treatment, hesitation to apply this technology exists due to limited experience under field-specific scour conditions and hydrodynamic forces. To address this concern, we conducted a feasibility study for an AC-blended cover at the Lauritzen Channel of the United Heckathorn Superfund Site in Richmond, California, United States, which was contaminated with dichlorodiphenyltrichloroethane and its metabolites (DDx) as well as dieldrin. Vessel activities causing sediment disturbance were identified as key factors for remedy selection. A blended cover with AC and coarse materials was designed to withstand varied hydrodynamic conditions and AC stability was tested in a current flume. The cover comprised medium-size gravel (D50 = 15 mm, D90 = 19 mm) with 4 % granular AC by weight. Flume erosion studies showed minimal AC loss (1-2 % of total AC) under shear forces of 9-31 Pa, which was equivalent to or exceeded the estimated worst-case erosional conditions in the channel induced by a hypothetical, stationary tugboat propelling at high power thrust. The treatability performance of the engineered blended cover design was evaluated through mesocosm studies using site sediment and various cover options. Post-treatment assessments on days 5 and 145 showed rapid reductions in freely dissolved (Cfree) DDx and dieldrin in the blended cover layers and surface water. For example, by day 145, Cfree DDx was reduced by over 98 %, meeting US EPA remedial goals for the site. It is concluded that the combination of both stability and performance testing demonstrates that an engineered blended cover-AC design would be a feasible remedial option at the site, and that this testing approach can be applied to evaluate in-situ treatment in other sediment cleanup activities.

4.
Environ Sci Technol ; 45(9): 4016-22, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21456572

RESUMO

For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monóxido de Carbono/análise , Exposição Ambiental/análise , Movimentos do Ar , Difusão , Monitoramento Ambiental/métodos , Habitação , Modelos Químicos , Ventilação
5.
J Geophys Res Planets ; 126(12): e2021JE006875, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35846556

RESUMO

Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.

6.
Environ Sci Technol ; 44(6): 2197-2203, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20178334

RESUMO

This study presents the first mechanistic model describing broth temperature in column photobioreactors as a function of static (location, reactor geometry) and dynamic (light irradiance, air temperature, wind velocity) parameters. Based on a heat balance on the liquid phase the model predicted temperature in a pneumatically agitated column photobioreactor (1 m(2) illuminated area, 0.19 m internal diameter, 50 L gas-free cultivation broth) operated outdoor in Singapore to an accuracy of 2.4 °C at the 95% confidence interval over the entire data set used (104 measurements from 7 different batches). Solar radiation (0 to 200 W) and air convection (-30 to 50 W)were the main contributors to broth temperature change. The model predicted broth temperature above 40 °C will be reached during summer months in the same photobioreactor operated in California, a value well over the maximum temperature tolerated by most commercial algae species. Accordingly, 18,000 and 5500 GJ year(-1) ha(-1) of heat energy must be removed to maintain broth temperature at or below 25 and 35 °C, respectively, assuming a reactor density of one reactor per square meter. Clearly, the significant issue of temperature control must be addressed when evaluating the technical feasibility, costs, and sustainability of large-scale algae production.


Assuntos
Temperatura Alta , Modelos Biológicos , Fotobiorreatores , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Fotossíntese , Luz Solar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa