RESUMO
Anthropogenic warming is altering species abundance, distribution, physiology, and more. How changes observed at the species level alter emergent community properties is an active and urgent area of research. Trait-based ecology and regime shift theory provide complementary ways to understand climate change impacts on communities, but these two bodies of work are only rarely integrated. Lack of integration handicaps our ability to understand community responses to warming, at a time when such understanding is critical. Therefore, we advocate for merging trait-based ecology with regime shift theory. We propose a general set of principles to guide this merger and apply these principles to research on marine communities in the rapidly warming North Atlantic. In our example, combining trait distribution and regime shift analyses at the community level yields greater insight than either alone. Looking forward, we identify a clear need for expanding quantitative approaches to collecting and merging trait-based and resilience metrics in order to advance our understanding of climate-driven community change.
Assuntos
Mudança Climática , Ecologia , EcossistemaRESUMO
Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, â¼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.
Assuntos
Tubarões , Poluentes Químicos da Água , Animais , Tubarões/metabolismo , Monitoramento Ambiental , Bahamas , Fluorocarbonos/análise , New York , Cadeia AlimentarRESUMO
Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration. The patterns of genetic diversity within and among estuaries and cohorts presented here carry important implications in understanding the susceptibility to demographic shocks, even if the full extent of genetic diversity within and among winter flounder stocks on the US East Coast remains unresolved. Our findings reveal connectivity between estuaries in Long Island, New York, suggesting the potential for genetic rescue of depleted subpopulations. Family reconstruction and relatedness analysis indicate that split cohorts and migration contingents are not the result of genetically distinct lineages. We found no evidence for genetic structure separating these groups, and in some instances, we were able to detect closely related individuals that belonged to different migratory contingents or cohorts. Characterizing the spatial and behavioral organization of this species at the population level is crucial for comprehending its potential for recovery, not only in terms of biomass but also in reinstating the complex population structure that supports resilience. The search for generality in winter flounder spawning and migration behavior remains elusive, but perhaps the lack of generalities within this species is what has allowed it to persist in the face of decades of environmental and anthropogenic stressors.
Assuntos
Migração Animal , Linguado , Variação Genética , Dinâmica Populacional , Animais , Linguado/genética , Linguado/fisiologia , Estuários , New York , Genética Populacional , Feminino , Repetições de Microssatélites , MasculinoRESUMO
Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.
Assuntos
Ecossistema , Elasmobrânquios , Animais , Recifes de Corais , Biodiversidade , PeixesRESUMO
Recent spikes in interactions between humans and sharks in the New York Bight have sparked widespread reporting of possible causalities, many of which lack empirical support. Here we comment on the current state of knowledge regarding shark biology and management in New York waters emphasizing that the possible drivers of increased human-shark interactions are confounded by a lack of historical monitoring data. We outline several key research avenues that should be considered to ensure the safe and sustainable coexistence of humans, sharks, and their prey, in an era of accelerated environmental change.
Assuntos
Tubarões , Humanos , Animais , New York , Alimentos MarinhosRESUMO
The abundances of migratory shark species observed throughout the Mid-Atlantic Bight (MAB) during productive summer months suggest that this region provides critical habitat and prey resources to these taxa. However, the principal prey assemblages sustaining migratory shark biomass in this region are poorly defined. We applied high-throughput DNA metabarcoding to shark feces derived from cloacal swabs across nine species of Carcharhinid and Lamnid sharks to (1) quantify the contribution of broad taxa (e.g., invertebrates, fishes) supporting shark biomass during seasonal residency in the MAB and (2) determine whether the species displayed distinct dietary preference indicative of resource partitioning. DNA metabarcoding resulted in high taxonomic (species-level) resolution of shark diets with actinopterygian and elasmobranch fishes as the dominant prey categories across the species. DNA metabarcoding identified several key prey groups consistent across shark taxa that are likely integral for sustaining their biomass in this region, including Atlantic menhaden (Brevoortia tyrannus), Atlantic mackerel (Scomber scombrus), and benthic elasmobranchs, including skates. Our results are consistent with previously published stomach content data for the shark species of similar size range in the Northwest Atlantic Ocean, supporting the efficacy of cloacal swab DNA metabarcoding as a minimally invasive diet reconstruction technique. The high reliance of several shark species on Atlantic menhaden could imply wasp-waist food-web conditions during the summer months, whereby high abundances of forage fishes sustain a diverse suite of migratory sharks within a complex, seasonal food web.
Assuntos
Tubarões , Animais , Tubarões/genética , Código de Barras de DNA Taxonômico , Ecossistema , DNA , Dieta/veterináriaRESUMO
Understanding how intraspecific variation in the use of prey resources impacts energy metabolism has strong implications for predicting long-term fitness and is critical for predicting population-to-community level responses to environmental change. Here, we examine the energetic consequences of variable prey resource use in a widely distributed marine carnivore, juvenile sand tiger sharks (Carcharias taurus). We used carbon and nitrogen isotope analysis to identify three primary prey resource pools-demersal omnivores, pelagic forage, and benthic detritivores and estimated the proportional assimilation of each resource using Bayesian mixing models. We then quantified how the utilization of these resource pools impacted the concentrations of six plasma lipids and how this varied by ontogeny. Sharks exhibited variable reliance on two of three predominant prey resource pools: demersal omnivores and pelagic forage. Resource use variation was a strong predictor of energetic condition, whereby individuals more reliant upon pelagic forage exhibited higher blood plasma concentrations of very low-density lipoproteins, cholesterol, and triglycerides. These findings underscore how intraspecific variation in resource use may impact the energy metabolism of animals, and more broadly, that natural and anthropogenically driven fluctuations in prey resources could have longer term energetic consequences.
Assuntos
Tubarões , Animais , Teorema de Bayes , Carbono , Ecossistema , Lipídeos , Lipoproteínas LDL , Isótopos de Nitrogênio , Tubarões/fisiologia , TriglicerídeosRESUMO
The isotopic composition of tooth-bound collagen has long been used to reconstruct dietary patterns of animals in extant and palaeoecological systems. For sharks that replace teeth rapidly in a conveyor-like system, stable isotopes of tooth collagen (δ13 CTeeth & δ15 NTeeth ) are poorly understood and lacking in ecological context relative to other non-lethally sampled tissues. This tissue holds promise, because shark jaws may preserve isotopic chronologies from which to infer individual-level ecological patterns across a range of temporal resolutions. Carbon and nitrogen stable isotope values were measured and compared between extracted tooth collagen and four other non-lethally sampled tissues of varying isotopic turnover rates: blood plasma, red blood cells, fin and muscle, from eight species of sharks. Individual-level isotopic variability of shark tooth collagen was evaluated by profiling teeth of different ages across whole jaws for the shortfin mako shark Isurus oxyrinchus and sandbar shark Carcharhinus plumbeus. Measurements of δ13 CTeeth and δ15 NTeeth were positively correlated with isotopic values from the four other tissues. Collagen δ13 C was consistently 13 C-enriched relative to all other tissues. Patterns for δ15 N were slightly less uniform; tooth collagen was generally 15 N-enriched relative to muscle and red blood cells, but congruent with fin and blood plasma (values clustered around a 1:1 relationship). Significant within-individual variability was observed across whole shortfin mako shark (δ13 C range = 1.4, δ15 N range = 3.6) and sandbar shark (δ13 C range = 1.2-2.4, δ15 N range = 1.7-2.4) jaws, which trended with tooth age. We conclude that amino acid composition and associated patterns of isotopic fractionation result in predictable isotopic offsets between tissues. Within-individual variability of tooth collagen stable isotope values suggests teeth of different ages may serve as ecological chronologies, that could be applied to studies on migration and individual-level diet variation across diverse time-scales. Greater understanding of tooth replacement rates, isotopic turnover and associated fractionation of tooth collagen will help refine potential ecological inferences, outlining clear goals for future scientific inquiry.
Assuntos
Tubarões , Animais , Isótopos de Carbono , Colágeno , Dieta/veterinária , Isótopos de NitrogênioRESUMO
Instances of sexual dimorphism occur in a great variety of forms and manifestations. Most skates (Batoidea: Rajoidei) display some level of body shape dimorphism in which the pectoral fins of mature males develop to create a distinct bell-shaped body not found in females. This particular form of dimorphism is present in each of the sister species Leucoraja erinacea and Leucoraja ocellata, but differences between sexes are much greater in the former. In order to understand the nature and potential causes of pectoral dimorphism, we used geometric morphometrics to investigate allometry of fin shape in L. erinacea and L. ocellata and its relationship to the development of reproductive organs, based on previous work on the bonnethead shark, Sphyrna tiburo. We found that allometric trajectories of overall pectoral shape were different in both species of skate, but only L. erinacea varied significantly with respect to endoskeleton development. Male maturation was characterized by a number of sex-specific morphological changes, which appeared concurrently in developmental timing with elongation of cartilage-supported claspers. We suggest that external sexual dimorphism of pectoral fins in skates is a byproduct of skeletal growth needed for clasper development. Further, the magnitude of male shape change appears to be linked to the differential life histories of species. This work reports for the first time that pectoral dimorphism is a persistent feature in rajoid fishes, occurring in varying degrees across several genera. Lastly, our results suggest that pectoral morphology may be useful as a relative indicator of reproductive strategy in some species.
Assuntos
Caracteres Sexuais , Rajidae/anatomia & histologia , Rajidae/fisiologia , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Animais , Feminino , Masculino , Reprodução , Rajidae/classificação , Rajidae/crescimento & desenvolvimentoRESUMO
We determined concentrations of Hg, Pb, Cd, Cr, As, Ni, Ag, Se, Cu, and Zn in muscle tissue of six commonly consumed Long Island fish species (black seabass, bluefish, striped bass, summer flounder, tautog, and weakfish, total sample size = 1211) caught off Long Island, New York in 2018 and 2019. Long-term consumption of these coastal fish could pose health risks largely due to Hg exposure; concentrations of the other trace elements were well below levels considered toxic for humans. By combining the measured Hg concentrations in the fish (means ranging from 0.11 to 0.27 mg/kg among the fish species), the average seafood consumption rate, and the current US EPA Hg reference dose (0.0001 mg/kg/d), it was concluded that seafood consumption should be limited to four fish meals per month for adults for some fish (bluefish, tautog) and half that for young children. Molar ratios of Hg:Se exceeded 1 for some black seabass, bluefish, tautog, and weakfish.
Assuntos
Bass , Mercúrio , Oligoelementos , Poluentes Químicos da Água , Animais , Peixes , Contaminação de Alimentos/análise , Mercúrio/análise , New York , Medição de Risco , Alimentos Marinhos/análise , Oligoelementos/análise , Poluentes Químicos da Água/análiseRESUMO
Abundance-occupancy (A-O) patterns were explored temporally and spatially for the Georges Bank finfish and shellfish community to evaluate long-term trends in the assemblage structure and to identify anthropogenic and environmental drivers impacting the ecosystem. Analyses were conducted for 32 species representing the assemblage from 1963 to 2006 using data from the National Marine Fisheries Service's annual autumn bottom trawl survey. For individual species, occupancy was considered the proportion of stations with at least one individual present, and abundance was estimated as the mean annual number of fish captured per station. Intraspecific relationships were estimated to provide information on utilization of space by a species. Multispecies interspecific relationships over all species for each year were fitted to estimate assemblage structural changes over the time series. Results indicated that the slopes and strengths of interspecific A-O relationships significantly declined over the duration of the time series, and this decline was significantly related to groundfish landings. However, the rate of decline was not constant, and a breakpoint analysis of interspecific slopes indicated that 1973 was a period of "state" change. More importantly a jackknife-after-bootstrap analysis indicated that the early 1970s followed by the 1990s were periods of higher than average probability of significant break points. While it is difficult to determine causation, the results suggest that long-term impacts such as habitat fragmentation may be influencing the species assemblage structure in the Georges Bank ecosystem. Further, we used slopes from the intraspecific A-O relationships to derive a measure of a species' potential risk of hyperstability, where catch rates remain high as the population declines. Combining this measure of the risk of hyperstability with resilience to exploitation provided a means to rank species risk of decline due to both demographics and the interaction of the behaviors of the species and fishing fleets.
Assuntos
Peixes , Frutos do Mar , Animais , Biologia Marinha , Dinâmica PopulacionalRESUMO
Mercury (Hg) concentrations in fishes from the NW Atlantic Ocean pose concern due to the importance of this region to U.S. fisheries harvest. In this study, total Hg (THg) concentrations and nitrogen stable isotope (δ15N) values were quantified in muscle tissues sampled from Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish collected during a fishery-independent survey conducted in the NW Atlantic to compare bioaccumulation patterns between these species. Total Hg concentrations averaged (±SD) 0.4 ± 0.4 µg/g dry weight (d.w.) for L. chamaeleonticeps and 1.1 ± 0.7 µg/g d.w. for C. microps with <2% of all sampled fish, those >70 cm fork length, exceeding the most restrictive USEPA regulatory guidelines for human consumption (THg > 0.46 µg/g w.w.), when converted to wet weight concentrations. The THg concentrations reported here for individuals from the NW Atlantic stock are comparable to those reported for similarly sized individuals collected from the SW Atlantic stock but notably lower than those reported for Gulf of Mexico L. chamaeleonticeps, indicating different Hg exposure and assimilation kinetics for fish from the NW Atlantic, and highlights the broad geographic variability of Hg bioaccumulation among Tilefish stocks. Caulolatilus microps had higher δ15N values relative to L. chamaeleonticeps and a pattern of decreasing THg concentrations was also present from south to north across the study range. It is concluded that this trophic difference and spatial pattern in Tilefish THg concentrations emphasizes the habitat and resource partitioning mechanisms described for these sympatric species that permits their coexistence in the continental shelf environment. Importantly, regional variability in THg concentrations accentuate the possible roles of fine-scale biotic and abiotic processes that can act to regulate Hg bioaccumulation among individuals and species.
Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Oceano Atlântico , Bioacumulação , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Golfo do México , Humanos , Mercúrio/análise , Poluentes Químicos da Água/análiseRESUMO
Golden and Blueline Tilefish (Lopholatilus chamaeleonticeps and Caulolatilus microps) are keystone taxa in northwest (NW) Atlantic continental shelf-edge environments due to their biotic (trophic-mediated) and abiotic (ecosystem engineering) functional roles combined with high-value fisheries. Despite this importance, the ecological niche dynamics (i.e., those relating to trophic behavior and food-web interactions) of these sympatric species are poorly understood, knowledge of which may be consequential for maintaining both ecosystem function and fishery sustainability. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to build realized ecological niche hypervolumes to serve as proxies for diet and production use patterns of L. chamaeleonticeps and C. microps. We hypothesized that: (a) species exhibit ontogenetic shifts in diet and use of production sources; (b) species acquire energy from spatially distinct resource pools that reflect a sedentary life-history and differential use of the continental shelf-edge; and (c) species exhibit differentiation in one or more measured niche axes. We found evidence for ontogenetic shifts in diet (δ15N) but not production source (δ13C) in both species, suggesting a subtle expansion of measured ecological niche axes. Spatial interpolation of stable isotope ratios showed distinct latitudinal gradients; for example, individuals were 13C enriched in northern and 15N enriched in southern regions, supporting the assertion that tilefish species acquire energy from regional resource pools. High isotopic overlap was observed among species (≥82%); however, when hypervolumes included depth and region of capture, overlap among species substantially decreased to overlap estimates of 15%-77%. This suggests that spatial segregation could alleviate potential competition for resources among tilefish species inhabiting continental shelf-edge environments. Importantly, our results question the consensus interpretation of isotopic overlap estimates as representative of direct competition among species for shared resources or habitats, instead identifying habitat segregation as a possible mechanism for coexistence of tilefish species in the NW Atlantic.
RESUMO
Reduction of ecosystem connectivity has long-lasting impacts on food webs. Anadromous fish, which migrate from marine to freshwater ecosystems to complete reproduction, have seen their historically larger ecosystem role undercut by widespread riverine habitat fragmentation and other impacts mainly derived from anthropogenic sources. The result has been extensive extirpations and increased susceptibility to a suite of environmental factors that currently impede recovery. Under this present-day context of reduced productivity and connectivity, aggressive management actions and enforcement of catch limits including bycatch caps and complete moratoria on harvest have followed. What remains less understood are the implications of changes to food webs that co-occurred. What benefits restoration could provide in terms of ecosystem functioning in relation to economic costs associated with dam removal and remediation is unknown and can limit the scope and value of restoration activities. Here we employ, historical landscape-based biomass estimates of anadromous alosine for the first time in an ecosystem modeling of the Northeast US large marine ecosystem (LME), to evaluate the value of improving connectivity by measuring the increase in energy flow and population productivity. We compared a restored alosine model to a contemporary model, analyzing the impacts of the potential increase of connectivity between riverine and oceanic systems. There was the potential for a moderate biomass increase of piscivorous species with high economic value, including Atlantic cod, and for a major increase for species of conservation concern such as pelagic sharks, seabirds and marine mammals. Our study highlights the benefits of increased connectivity between freshwater and ocean ecosystems. We demonstrate the significant role anadromous forage fish could play in improving specific fisheries and overall ecosystem functioning, mainly through the diversification of species capable of transferring primary production to upper trophic levels, adding to benefits associated with their restoration.
Assuntos
Cadeia Alimentar , Rios , Animais , Oceano Atlântico , Biomassa , Conservação dos Recursos Naturais , Pesqueiros , Peixes , New EnglandRESUMO
Imminent development of offshore wind farms on the outer continental shelf of the United States has led to significant concerns for marine wildlife. The scarcity of empirical data regarding fish species that may utilize development sites, further compounded by the novelty of the technology and inherent difficulty of conducting offshore research, make identification and assessment of potential stressors to species of concern problematic. However, there is broad potential to mitigate putatively negative impacts to seasonal migrants during the exploration and construction phases. The goal of this study was to establish baseline information on endangered Atlantic Sturgeon in the New York Wind Energy Area (NY WEA), a future offshore development site. Passive acoustic transceivers equipped with acoustic release mechanisms were used to monitor the movements of tagged fish in the NY WEA from November 2016 through February 2018 and resulted in detections of 181 unique individuals throughout the site. Detections were highly seasonal and peaked from November through January. Conversely, fish were relatively uncommon or entirely absent during the summer months (July-September). Generalized additive models indicated that predictable transitions between coastal and offshore habitat were associated with long-term environmental cues and localized estuarine conditions, specifically the interaction between photoperiod and river temperature. These insights into the ecology of marine-resident Atlantic Sturgeon are crucial for both defining monitoring parameters and guiding threat assessments in offshore waters and represent an important initial step towards quantitatively evaluating Atlantic Sturgeon at a scale relevant to future development.
Assuntos
Migração Animal/fisiologia , Espécies em Perigo de Extinção , Fontes Geradoras de Energia , Peixes/fisiologia , Vento , Animais , New YorkRESUMO
Identifying prey resource pools supporting fish biomass can elucidate trophic pathways of pollutant bioaccumulation. We used multiple chemical tracers (carbon [δ13C] and nitrogen [δ15N] stable isotopes and total mercury [THg]) to identify trophic pathways and measure contaminant loading in upper trophic level fishes residing at a reef and open-ocean interface near Eleuthera in the Exuma Sound, The Bahamas. We focused predominantly on the trophic pathways of mercury bioaccumulation in dolphinfish Coryphaena hippurus and wahoo Acanthocybium solandri, 2 commonly consumed pelagic sportfish in the region. Despite residing within close proximity to productive and extensive coral reefs, both dolphinfish and wahoo relied almost exclusively on open-ocean prey over both short and long temporal durations. A larger isotopic niche of dolphinfish suggested a broader diet and some potential prey differentiation between the 2 species. THg concentrations in dolphinfish (0.2 ± 0.1 ppm) and wahoo (0.3 ± 0.3 ppm) were mostly below recommended guidelines for humans (US Environmental Protection Agency (EPA) = 0.3 ppm, US Food and Drug Administration (FDA)= 1.0 ppm) and were within ranges previously reported for these species. However, high THg concentrations were observed in muscle and liver tissue of commonly consumed reef-associated fishes, identifying a previously unrecognized route of potentially toxic Hg exposure for human consumers on Eleuthera and neighboring islands.
RESUMO
This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36-59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present.
Assuntos
Ecossistema , Estuários , Biodiversidade , Modelos TeóricosRESUMO
The interspecific abundance-occupancy relationship (AOR) is a widely used tool that describes patterns of habitat utilization and, when evaluated over time, may be used to identify large-scale changes in community structure. Our primary goal for this research was to validate the utility of AORs as temporal indicators of community state. We used long-term survey data in four regions of the northwest Atlantic coastal shelf (NWACS) to estimate the diversity of spatial behaviors in each community, which we modeled with negative binomial (NB) distributions. NB parameters were used to generate time series data for simulated communities, from which AORs were then estimated and evaluated for temporal trends. We found that AORs from simulated communities were similar in year-to-year variation to empirical relationships. In order to further understand the role of spatial diversity in the generation of AOR trends, we did additional simulations where NB parameters were manually manipulated. In one instance, we ran simulations while holding species' parameters constant over time. This treatment effectively removed trends, suggesting that temporal change in community relationships was the result of genuine variation in intraspecific spatial use. In another set of simulations, we conducted a case study to evaluate the impact of a select group of schooling and spatially aggregating species on an especially rapid shift in AORs in the Gulf of Maine from 1973 to 1983. Removals of these species reduced the magnitudes of most trends, demonstrating their importance to observed community changes. This research directly links variation in AORs to distribution and density-related processes and provides a potentially powerful framework to identify community-level change and to test ecological and mechanistic hypotheses.
Assuntos
Distribuição Animal/fisiologia , Método de Monte Carlo , Dinâmica Populacional/tendências , Animais , Oceano Atlântico , Baías , Biodiversidade , Ecossistema , Pesqueiros , Maine , Densidade DemográficaRESUMO
Temporal changes in occupancy of the Georges Bank (NE USA) fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT). EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy) eventually leading to their extinction (extirpation) over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance) of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage.
Assuntos
Ecossistema , Peixes/fisiologia , Animais , Biodiversidade , Massachusetts , Modelos Biológicos , Dinâmica Populacional , Fatores de TempoRESUMO
Batoids (Chondrichthyes: Batoidea) are a diverse group of cartilaginous fishes which comprise a monophyletic sister lineage to all neoselachians or modern sharks. All species in this group possess anteroposteriorly expanded-pectoral fins, giving them a unique disc-like body form. Reliance on pectoral fins for propulsion ranges from minimal (sawfish) to almost complete dependence (skates and rays). A recent study on the diversity of planform pectoral fin shape in batoids compared overall patterns of morphological variation within the group. However, inconsistent pectoral homology prevented the study from accurately representing relationships within and among major batoid taxa. With previous work in mind, we undertook an independent investigation of pectoral form in batoids and evaluated the implications of shape diversity on locomotion and lifestyle, particularly in the skates (Rajoidei) and rays (Myliobatoidei). We used geometric morphometrics with sliding semilandmarks to analyze pectoral fin outlines and also calculate fin aspect ratios (AR), a functional trait linked to locomotion. In agreement with previous work, our results indicated that much of the evolution of batoid pectoral shape has occurred along a morphological axis that is closely related to AR. For species where kinematic data were available, both shape and AR were associated with swimming mode. This work further revealed novel patterns of shape variation among batoids, including strong bimodality of shape in rays, an intermediate location of skate species in the morphospace between benthic/demersal and pelagic rays, and approximately parallel shape trajectories in the benthic/demersal rays and skates. Finally, manipulation of landmarks verified the need for a consistent and accurate definition of homology for the outcome and efficacy of analyses of pectoral form and function in batoids.