RESUMO
Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is the leading cause of arboviral neuroinfections in Europe. Only a few classes of the nucleoside and non-nucleoside inhibitors were investigated against TBEV reproduction. Paving the way to previously unexplored areas of anti-TBEV chemical space, we assessed the inhibition of TBEV reproduction in the plaque reduction assay by various compounds derived from cyanothioacetamide and cyanoselenoacetamide. Compounds from seven classes, including 4-(alkylthio)-2-aryl-3-azaspiro[5.5]undec-4-ene-1,1,5-tricarbonitriles, 3-arylamino-2-(selenazol-2-yl)acrylonitriles, ethyl 6-(alkylseleno)-5-cyano-2-oxo-1,2-dihydropyridine-3-carboxylates, 6-(alkylseleno)-2-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles, 2-(alkylseleno)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitriles, 8-selenoxo-3,5,7,11-tetraazatricyclo[7.3.1.02,7 ]tridec-2-ene-1,9-dicarbonitriles, and selenolo[2,3-b]quinolines, inhibited TBEV reproduction with EC50 values in the micromolar range while showing moderate cytotoxicity and no inhibition of enterovirus reproduction. Thus, new scaffolds with promising anti-TBEV activity were found.
Assuntos
Acetamidas/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Acetamidas/síntese química , Acetamidas/química , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Relação Dose-Resposta a Droga , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Encefalite Transmitida por Carrapatos/virologia , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Suínos , Replicação Viral/efeitos dos fármacosRESUMO
This Research Article describes the synthesis of an over 700-member library of (8R/8S)-3-R-8-aryl-6-oxo-3,4,7,8-tetrahydro-2H,6H-pyrido[2,1-b][1,3,5]thiadiazin-9-carbonitriles by uncatalyzed Mannich-type reaction of N-methylmorpholinium (4R/4S)-4-aryl-3-cyano-6-oxo-1,4,5,6-tetrahydropyridin-2-thiolates with a set of primary amines and excessive HCHO. The scope and limitations of the reaction were studied. Starting thiolates were obtained in yields of 53-82% by multicomponent reaction of aromatic aldehydes, cyanothioacetamide, 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid), and N-methylmorpholine, followed by heterocyclization of the resulting Michael adducts.
Assuntos
Bases de Mannich/química , Tiadiazinas/síntese química , Catálise , Dioxanos , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas , Tiadiazinas/químicaRESUMO
Flaviviruses form a large family of enveloped viruses affecting millions of people over the world. To date, no specific therapy was suggested for the infected people, making the treatment exclusively symptomatic. Several attempts were performed earlier for the design of fusion inhibitors for mosquito-borne flaviviruses, whereas for the tick-borne flaviviruses such design had not been performed. We have constructed homology models of envelope glycoproteins of tick-transmitted flaviviruses with the detergent binding pocket in the open state. Molecular docking of substituted 1,4-dihydropyridines and pyrido[2,1-b][1,3,5]thiadiazines was made against these models, and 89 hits were selected for the in vitro experimental evaluation. Seventeen compounds showed significant inhibition against tick-borne encephalitis virus, Powassan virus, or Omsk hemorrhagic fever virus in the 50% plaque reduction test in PEK cells. These compounds identified through rational design are the first ones possessing reproduction inhibition activity against tick-borne flaviviruses.