Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-9427847

RESUMO

Recent studies revealed that animal toxins with unrelated biological functions often possess a similar architecture. To tentatively understand the evolutionary mechanisms that may govern this principle of functional prodigality associated with a structural economy, two complementary approaches were considered. One of them consisted of investigating the rates of mutations that occur in cDNAs and/or genes that encode a variety of toxins with the same fold. This approach was largely adopted with phospholipases A2 from Viperidae and to a lesser extent with three-fingered toxins from Elapidae and Hydrophiidae. Another approach consisted of investigating how a given fold can accommodate distinct functional topographies. Thus, a number of topologies by which three-fingered toxins exert distinct functions were investigated either by making chemical modifications and/or mutational analyses or by studying the three-dimensional structure of toxin-target complexes. This review shows that, although the two approaches are different, they commonly indicate that most if not all the surface of a snake toxin fold undergoes natural engineering, which may be associated with an accelerated rate of evolution. The biochemical process by which this phenomenon occurs remains unknown.


Assuntos
Evolução Molecular , Venenos de Serpentes , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Serpentes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa