Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 365(6453): 587-590, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395782

RESUMO

In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon. The observed smoke lifetime in the stratosphere was 40% shorter than calculated with a standard model that does not consider photochemical loss of organic carbon. Photochemistry is represented by using an empirical ozone-organics reaction probability that matches the observed smoke decay. The observed rapid plume rise, latitudinal spread, and photochemical reactions provide new insights into potential global climate impacts from nuclear war.


Assuntos
Fumaça , Ozônio Estratosférico/análise , Incêndios Florestais , Canadá
2.
Artigo em Inglês | MEDLINE | ID: mdl-31360778

RESUMO

Intense heating by wildfires can generate deep, smoke-infused thunderstorms, known as pyrocumulonimbus (pyroCb), which can release a large quantity of smoke particles above jet aircraft cruising altitudes. Injections of pyroCb smoke into the lower stratosphere have gained increasing attention over the past 15 years due to the rapid proliferation of satellite remote sensing tools. Impacts from volcanic eruptions and other troposphere-to-stratosphere exchange processes on stratospheric radiative and chemical equilibrium are well recognized and monitored. However, the role of pyroCb smoke in the climate system has yet to be acknowledged. Here, we show that the mass of smoke aerosol particles injected into the lower stratosphere from five near-simultaneous intense pyroCbs occurring in western North America on 12 August 2017 was comparable to that of a moderate volcanic eruption, and an order of magnitude larger than previous benchmarks for extreme pyroCb activity. The resulting stratospheric plume encircled the Northern Hemisphere over several months. By characterizing this event, we conclude that pyroCb activity, considered as either large singular events, or a full fire season inventory, significantly perturb the lower stratosphere in a manner comparable with infrequent volcanic intrusions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa