Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 664, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961357

RESUMO

BACKGROUND: Wheat landraces are considered a valuable source of genetic diversity for breeding programs. It is useful to evaluate the genetic diversity in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. In addition, constructing a core germplasm set that represents the genetic diversity of the entire variety set is of great significance for the efficient conservation and utilization of wheat landrace germplasms. RESULTS: To understand the genetic diversity in wheat landrace, 2,023 accessions in the Jiangsu Provincial Crop Germplasm Resource Bank were used to explore the molecular diversity and population structure using the Illumina 15 K single nucleotide polymorphism (SNP) chip. These accessions were divided into five subpopulations based on population structure, principal coordinate and kinship analysis. A significant variation was found within and among the subpopulations based on the molecular variance analysis (AMOVA). Subpopulation 3 showed more genetic variability based on the different allelic patterns (Na, Ne and I). The M strategy as implemented in MStratv 4.1 software was used to construct the representative core collection. A core collection with a total of 311 accessions (15.37%) was selected from the entire landrace germplasm based on genotype and 12 different phenotypic traits. Compared to the initial landrace collections, the core collection displayed higher gene diversity (0.31) and polymorphism information content (PIC) (0.25), and represented almost all phenotypic variation. CONCLUSIONS: A core collection comprising 311 accessions containing 100% of the genetic variation in the initial population was developed. This collection provides a germplasm base for effective management, conservation, and utilization of the variation in the original set.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/genética , China , Genética Populacional , Fenótipo , Genótipo
2.
Mol Breed ; 43(7): 56, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37424796

RESUMO

European winter wheat cultivar "Tabasco" was reported to have resistance to powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) in China. In previous studies, Tabasco was reported to have the resistance gene designated as Pm48 on the short arm of chromosome 5D when a mapping population was phenotyped with pathogen isolate Bgt19 collected in China and was genotyped with simple sequence repeat (SSR) markers. In this study, single-nucleotide polymorphism (SNP) chips were used to rapidly determine the resistance gene by mapping a new F2 population that was developed from Tabasco and a susceptible cultivar "Ningmaizi119" and inoculated with pathogen isolate NCF-D-1-1 that was collected in the USA. The segregation of resistance in the population was found to link with Pm2 which was identified in Tabasco. Therefore, it was concluded that the previously reported Pm48 on chromosome arm 5DS in Tabasco should be the Pm2 gene on the same chromosome. The Pm2 was also found in European cultivars "Mattis" and "Claire" but not in any of the accessions from diploid wheat Aegilops tauschii or modern cultivars such as "Gallagher," "Smith's Gold," and "OK Corral" being used in the Great Plains in the USA. A KASP marker was developed to track the resistance allele Pm2 in wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01402-3.

3.
Plant Dis ; 105(4): 997-1005, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200970

RESUMO

Wheat sharp eyespot, a disease mainly caused by soilborne fungus Rhizoctonia cerealis, is a threat to world wheat production. Wheat's genetic resistance to sharp eyespot is a potential approach to reducing the application of fungicides and farming practice inputs. To identify the genetic basis of sharp eyespot resistance in Niavt14, a recombinant inbred line population comprising 215 F8 lines from Niavt14 × Xuzhou25, was developed. An earlier linkage map (148 simple sequence repeat markers) was updated with 5,792 polymorphic Affymetrix Axiom 55K single-nucleotide polymorphisms to a new map of 5,684.2 centimorgans with 1,406 nonredundant markers. The new linkage map covered all 21 chromosomes of common wheat and showed a good collinearity with the IWGSC RefSeq v1.0 genome. We conducted quantitative trait locus (QTL) mapping for sharp eyespot resistance using the adult plant response data from the field of five consecutive growing seasons and one greenhouse test. Two stable QTL on chromosomes 2B and 7D that were identified in the previous study were confirmed, and three novel, stable QTL, explaining 4.0 to 17.5% phenotypic variation, were mapped on 1D, 6D, and 7A, which were independent of QTL for phenology and plant height. The QTL on 1D, 2B, 6D, and 7A showed low frequencies in 384 landraces (0 to 10%) and 269 elite cultivars (5 to 23%) from the southern winter wheat region and the Yellow and Huai River Valley facultative wheat region in China, respectively. These identified QTL could be used in wheat breeding programs for improving sharp eyespot resistance through marker-assisted selection.


Assuntos
Resistência à Doença , Triticum , Basidiomycota , China , Resistência à Doença/genética , Dissecação , Humanos , Melhoramento Vegetal , Doenças das Plantas/genética , Estações do Ano , Triticum/genética
4.
Plant Dis ; 105(10): 3127-3133, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33630690

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that threatens yield and quality. Host resistance is considered the most effective and preferred means to control this disease. Wheat landrace Duanganmang (DGM) showed high resistance or near immunity to Blumeria graminis f. sp. tritici mixture from Henan Province, China. DGM was crossed with highly susceptible Chinese wheat landrace Huixianhong (HXH) and cultivar 'Shimai 15' (SM15) to produce genetic populations. The resistance of DGM to Blumeria graminis f. sp. tritici isolate E09 was shown to be controlled by a single dominant Mendelian factor, tentatively designated PmDGM. Marker analysis and 55K single nucleotide polymorphism (SNP) array scanning showed that this gene was positioned in the Pm5 interval (2.4 cM or 1.61 Mb) flanked by Xhenu099 and Xmp1158 in the Chinese Spring reference genome. Homology-based cloning and sequence analysis demonstrated that DGM has the identical NLR gene (Pm5e) and RXL gene reported in Fuzhuang 30 (FZ30), conferring and modifying powdery mildew resistance, respectively. However, based on the different reaction patterns to the Blumeria graminis f. sp. tritici isolate B15 between DGM and FZ30, the authors speculate that DGM may have two tightly linked genes that could not be separated in the current mapping population, one of which is PmDGM and the other being Pm5e. Hence, this study provides a valuable resistance resource for improvement of powdery mildew resistance.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas , Triticum/genética
5.
Int J Mol Sci ; 15(12): 21896-912, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25464379

RESUMO

We have constructed three bacterial artificial chromosome (BAC) libraries of wheat cultivar Triticum aestivum Wangshuibai, germplasms T. monococcum TA2026 and TA2033. A total of 1,233,792,170,880 and 263,040 clones were picked and arrayed in 384-well plates. On the basis of genome sizes of 16.8 Gb for hexaploid wheat and 5.6 Gb for diploid wheat, the three libraries represented 9.05-, 2.60-, and 3.71-fold coverage of the haploid genomes, respectively. An improved descending pooling system for BAC libraries screening was established. This improved strategy can save 80% of the time and 68% of polymerase chain reaction (PCR) with the same successful rate as the universal 6D pooling strategy.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Triticum/genética , DNA de Plantas/genética , Genoma de Planta , Reação em Cadeia da Polimerase
6.
Nat Commun ; 15(1): 503, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218848

RESUMO

Powdery mildew poses a significant threat to wheat crops worldwide, emphasizing the need for durable disease control strategies. The wheat-Dasypyrum villosum T5AL·5 V#4 S and T5DL·5 V#4 S translocation lines carrying powdery mildew resistant gene Pm55 shows developmental-stage and tissue-specific resistance, whereas T5DL·5 V#5 S line carrying Pm5V confers resistance at all stages. Here, we clone Pm55 and Pm5V, and reveal that they are allelic and renamed as Pm55a and Pm55b, respectively. The two Pm55 alleles encode coiled-coil, nucleotide-binding site-leucine-rich repeat (CNL) proteins, conferring broad-spectrum resistance to powdery mildew. However, they interact differently with a linked inhibitor gene, SuPm55 to cause different resistance to wheat powdery mildew. Notably, Pm55 and SuPm55 encode unrelated CNL proteins, and the inactivation of SuPm55 significantly reduces plant fitness. Combining SuPm55/Pm55a and Pm55b in wheat does not result in allele suppression or yield penalty. Our results provide not only insights into the suppression of resistance in wheat, but also a strategy for breeding durable resistance.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Alelos , Ascomicetos/genética , Melhoramento Vegetal , Poaceae/genética , Resistência à Doença/genética , Doenças das Plantas/genética
7.
Funct Integr Genomics ; 13(4): 445-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24045932

RESUMO

Sorghum is not only an important cereal crop but also a biofuel crop. The sorghum brown midrib mutant 6 (bmr6) has a reduced lignin content in the cell walls and vascular tissues, which could potentially be advantageous for cellulosic biofuel production. Meanwhile, both dry matter yield and plant height were decreased in the bmr6 mutant. To identify genes affected in the mutant, differential gene expression analysis was performed for bmr6 and the wild type. As a result, a total of 1,052 differentially expressed genes were detected between the two samples, of which 166 genes were downregulated and 886 genes were upregulated. Five hundred seventy-nine of the 1,052 differentially expressed genes could be assigned to 154 documented pathways. These pathways mainly included primary and secondary metabolism. Therefore, mutation of the bmr6 gene, which impaired the biosynthesis of lignin, ultimately affected the expression of these genes associated with the growth and development of sorghum. Except for the bmr6 gene, 11 key enzyme genes of monolignols biosynthesis were upregulated. Promoter analysis identified that these genes have common MYB sites. It revealed that a feedback mechanism existed in the pathway and a MYB1 transcription factor (Sb02g031190) could associate with the upregulation of these genes in sorghum. In this study, we investigated gene expressions at a global level in sorghum bmr6 mutant and provided valuable insights into the mechanisms of lignin biosynthesis.


Assuntos
Mutação , Proteínas de Plantas/metabolismo , Sorghum/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Lignina/genética , Redes e Vias Metabólicas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sorghum/enzimologia , Sorghum/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Theor Appl Genet ; 126(4): 913-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23400828

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating foliar diseases of wheat and imposes a constant challenge on wheat breeders. Xiaohongpi, a Chinese landrace of wheat (Triticum aestivum L.), shows resistance to powdery mildew during the entire growth stage in the field and under controlled conditions. The F1 plants from cross of the powdery mildew susceptible cultivar Yangmai158 with Xiaohongpi were susceptible to isolate Bgt19, the locally most prevalent Bgt isolate. In the derived F2 population and F3 progenies, the resistance segregation deviated significantly from the one-gene Mendelian ratio. However, marker analysis indicated that only one recessive gene conferred the resistance, which co-segregated with Xsts-bcd1231 that showed co-segregation with Pm4a in different studies. Allelism test indicated that this recessive resistance gene, designated as pmX, is either allelic or tightly linked to Pm4a. The pmX gene was different from Pm4 alleles in resistance spectrum. Examination of the genotype frequencies at pmX and the linked marker loci in the F2 population showed that a genetic variation favoring the transmission of Xiaohongpi alleles could be the cause of deviated segregation. Mapping of the pmX-linked markers using Chinese Spring deletion lines indicated that it resides in the 0.85-1.00 bin of chromosome 2AL.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , China , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Marcadores Genéticos/genética , Genótipo
9.
Front Plant Sci ; 13: 992811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092425

RESUMO

Molecular markers are developed to accelerate deployment of genes for desirable traits segregated in a bi-parental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if such markers for multiple traits could be identified in an F2 population. In this study, single nucleotide polymorphisms (SNP) chips were used to identify major genes for heading date and awn in an F2 population without developing RILs or DH lines. The population was generated from a cross between a locally adapted spring wheat cultivar "Ningmaizi119" and a winter wheat cultivar "Tabasco" with a diverse genetic background. It was found that the dominant Vrn-D1 allele could make Ningmaizi119 flowered a few months earlier than Tabasco in the greenhouse and without vernalization. The observed effects of the allele were validated in F3 populations. It was also found that the dominant Ali-A1 allele for awnless trait in Tabasco or the recessive ali-A1 allele for awn trait in Ningmaizi119 was segregated in the F2 population. The allelic variation in the ALI-A1 gene relies not only on the DNA polymorphisms in the promoter but also on gene copy number, with one copy ali-A1 in Ningmaizi119 but two copies Ali-A1 in Tabasco based on RT-PCR results. According to wheat genome sequences, cultivar "Mattis" has two copies Ali-A1 and cultivar "Spelta" has four copies Ali-A in a chromosome that was uncharacterized (ChrUN), in addition to one copy on chromosome 5A. This study rapidly characterized the effects of the dominant Vrn-D1 allele and identified the haplotype of Ali-A1 in gene copy number in the F2 segregation population of common wheat will accelerate their deployment in cycling lines in breeding.

10.
Theor Appl Genet ; 123(7): 1099-106, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21755339

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most serious wheat diseases. The rapid evolution of the pathogen's virulence, due to the heavy use of resistance genes, necessitates the expansion of resistance gene diversity. The common wheat line D57 is highly resistant to powdery mildew. A genetic analysis using an F(2) population derived from the cross of D57 with the susceptible cultivar Yangmai 158 and the derived F(2:3) lines indicated that D57 carries two dominant powdery mildew resistance genes. Based on mapping information of polymorphic markers identified by bulk segregant analysis, these two genes were assigned to chromosomes 5DS and 6DS. Using the F(2:3) lines that segregated in a single-gene mode, closely linked PCR-based markers were identified for both genes, and their chromosome assignments were confirmed through linkage mapping. The gene on chromosome 5DS was flanked by Xgwm205 and Xmag6176, with a genetic distance of 8.3 cM and 2.8 cM, respectively. This gene was 3.3 cM from a locus mapped by the STS marker MAG6137, converted from the RFLP marker BCD1871, which was 3.5 cM from Pm2. An evaluation with 15 pathogen isolates indicated that this gene and Pm2 were similar in their resistance spectra. The gene on chromosome 6DS was flanked by co-segregating Xcfd80 and Xmag6139 on one side and Xmag6140 on the other, with a genetic distance of 0.7 cM and 2.7 cM, respectively. This is the first powdery mildew resistance gene identified on chromosome 6DS, and plants that carried this gene were highly resistant to all of the 15 tested pathogen isolates. This gene was designated Pm45. The new resistance gene in D57 could easily be transferred to elite cultivars due to its common wheat origin and the availability of closely linked molecular markers.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Doenças das Plantas/imunologia , Triticum/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos/genética , Técnicas Genéticas , Modelos Genéticos , Doenças das Plantas/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Pós , Virulência
11.
Environ Sci Pollut Res Int ; 28(12): 15043-15054, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33230790

RESUMO

Excess trace metals may cause damage to human health due to the consumption of food grain grown in contaminated soils. This study was designed to understand the genetic mechanisms of copper (Cu) and zinc (Zn) accumulation in wheat grain under stressed environments. The differences of Cu/Zn contents in the grain among 246 wheat varieties were analyzed, and the wheat varieties with low or high accumulation of Cu and Zn in the safe range were also screened out. The accumulation of Cu and Zn in grains of "Chushanbao" was lowest, which could be used as a novel germplasm for wheat breeding under heavy metal stress. We found that Cu contents of wheat grain were significantly and positively correlated with Zn. The quantitative trait loci (QTLs) for grain Cu content (GCuC) and grain Zn content (GZnC) were detected by genome-wide association study (GWAS). Twenty-three loci affecting GCuC were identified on chromosomes 1A, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B 4D, 5A, 6D, 7A, and 7B, explaining 2.6-5.8% of the phenotypic variation. Sixteen loci associated with the GZnC on 11 different chromosomes 1B, 2B, 2D, 3A, 3D, 4A, 4B, 5A, 5D, 6B, and 7D were detected, which could explain 2.7~6.6% of phenotypic variance. We also determined five associated loci on chromosomes 2B, 2D, 3A, 4B, and 5A were in pleiotropic regions affecting both GCuC and GZnC. This study would help in better understanding the molecular basis of Cu/Zn accumulation in wheat grain, and the associated markers may be useful for marker-assisted selection (MAS) breeding program.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Cobre , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fenótipo , Melhoramento Vegetal , Triticum/genética , Zinco
12.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898804

RESUMO

Powdery mildew caused by (DC.) f. sp. () is a globally devastating foliar disease of wheat ( L.). More than a dozen genes against this disease, identified from wheat germplasms of different ploidy levels, have been mapped to the region surrounding the locus on the long arm of chromosome 7A, which forms a resistance ()-gene cluster. and from einkorn wheat ( L.) were two of the genes belonging to this cluster. This study was initiated to fine map these two genes toward map-based cloning. Comparative genomics study showed that macrocolinearity exists between L. chromosome 1 (Bd1) and the - region, which allowed us to develop markers based on the wheat sequences orthologous to genes contained in the Bd1 region. With these and other newly developed and published markers, high-resolution maps were constructed for both and using large F populations. Moreover, a physical map of was constructed through chromosome walking with bacterial artificial chromosome (BAC) clones and comparative mapping. Eventually, and were restricted to a 0.12- and 0.86-cM interval, respectively. Based on the closely linked common markers, , , and (another powdery mildew resistance gene in the cluster) were not allelic to one another. Severe recombination suppression and disruption of synteny were noted in the region encompassing . These results provided useful information for map-based cloning of the genes in the cluster and interpretation of their evolution.


Assuntos
Resistência à Doença/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
13.
Theor Appl Genet ; 117(4): 471-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18504540

RESUMO

Triticum monococcum accession TA2026 showed resistance to wheat powdery mildew. To identify the resistance gene and transfer it to common wheat, genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from the cross of TA2026xM389. The results indicated that TA2026 possessed a recessive powdery mildew resistance gene. This gene was mapped to the terminal portion of chromosome 5AmL and flanked by SSR marker loci Xcfd39 and Xgwm126. Eight RFLP markers previously mapped to the terminal chromosome 5AmL were converted into STS markers. Three loci, detected by MAG1491, MAG1493 and MAG1494, the STS markers derived from RFLP probes CDO1312, PSR164 and PSR1201, respectively, were linked to this resistance gene with Xmag1493 only 0.9 cM apart from it. In addition, the STS marker MAG2170 developed from the tentative consensus wheat cDNA encoding the Mlo-like protein identified a locus co-segregating with Xmag1493. This is the first recessive powdery mildew resistance gene identified on chromosome 5Am, and is temporarily designated pm2026. We have successfully transferred it to a tetraploid background, and this resistance stock will now be used as the bridge parent for its transfer to common wheat.


Assuntos
Ascomicetos/patogenicidade , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Genes Recessivos , Ligação Genética , Hibridização Genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa