RESUMO
Protein lysine acetylation is a critical post-translational modification involved in a wide range of biological processes. To date, about 20,000 acetylation sites of Homo sapiens were identified through mass spectrometry-based proteomic technology, but more than 95% of them have unclear functional annotations because of the lack of existing prioritization strategy to assess the functional importance of the acetylation sites on large scale. Hence, we established a lysine acetylation functional evaluating model (LAFEM) by considering eight critical features surrounding lysine acetylation site to high-throughput estimate the functional importance of given acetylation sites. This was achieved by selecting one of the random forest models with the best performance in 10-fold cross-validation on undersampled training dataset. The global analysis demonstrated that the molecular environment of acetylation sites with high acetylation functional scores (AFSs) mainly had the features of larger solvent-accessible surface area, stronger hydrogen bonding-donating abilities, near motif and domain, higher homology, and disordered degree. Importantly, LAFEM performed well in validation dataset and acetylome, showing good accuracy to screen out fitness directly relevant acetylation sites and assisting to explain the core reason for the difference between biological models from the perspective of acetylome. We further used cellular experiments to confirm that, in nuclear casein kinase and cyclin-dependent kinase substrate 1, acetyl-K35 with higher AFS was more important than acetyl-K9 with lower AFS in the proliferation of A549 cells. LAFEM provides a prioritization strategy to large scale discover the fitness directly relevant acetylation sites, which constitutes an unprecedented resource for better understanding of functional acetylome.
Assuntos
Lisina , Proteômica , Humanos , Lisina/metabolismo , Acetilação , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismoRESUMO
OBJECTIVES: The purpose of this research was to study the impact of histone acetylation on glioblastoma multiforme (GBM) and lower-grade gliomas (LGG) and its potential implications for patient prognosis. We aimed to assess the histone acetylation score (HAs) and its relationship with key genes involved in histone acetylation regulation. METHOD: The TCGA-GBMLGG dataset, which provides comprehensive genomic and clinical information, was utilized for this study. We calculated the HAs by analyzing the expression levels of histone acetylation-related genes, including histone acetyltransferases and histone deacetylases, in GBM and LGG patients. Kaplan-Meier survival analysis was performed to evaluate the prognostic value of the HAs. Furthermore, correlation analysis and differential expression analysis were conducted to assess the relationship between the HAs and key genes involved in histone acetylation regulation, as well as the expression differences of immune checkpoint genes. RESULTS: Our analysis revealed a significant association between the HAs and patient prognosis, with higher HAs correlating to poorer outcomes in GBM and LGG patients. We observed a positive correlation between the HAs and key genes involved in histone acetylation regulation, indicating their potential role in modulating histone acetylation levels. Moreover, we found significant expression differences for immune checkpoint genes between high and low HAs groups, suggesting a potential impact of histone acetylation on the immune response in GBM and LGG. CONCLUSION: This study highlights the significance of histone acetylation in GBM and LGG. The HAs demonstrated prognostic value, indicating its potential as a clinically relevant biomarker. The correlation between the HAs and key genes involved in histone acetylation regulation provides insights into the underlying mechanisms driving histone acetylation dysregulation in GBM and LGG. Furthermore, the observed expression differences of immune checkpoint genes suggest a potential link between histone acetylation and the immune response. These findings contribute to our understanding of the molecular basis of GBM and LGG and have implications for personalized treatment approaches targeting histone acetylation and the immune microenvironment. Further validation and functional studies are needed to confirm these findings and explore potential therapeutic strategies.
Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Histonas/genética , Acetilação , Glioma/genética , Genômica , Microambiente TumoralRESUMO
A high soluble and stable É-Zn(OH)2 precursor is synthesized at below room temperature to efficiently prepare ZnO whiskers. The experimental results indicate that the formation of ZnO whiskers is carried out mainly via two steps: the formation of ZnO seeds from É-Zn(OH)2 via the in situ solid conversion, and the following growth of whiskers via dissolution-precipitation route. The decrease of temperature from 25 to 5 °C promotes the formation of É-Zn(OH)2 with higher solubility and stability, which balances the conversion and dissolution rates of precursor. The Rietveld refinement, DFT calculations and MD simulations reveal that the primary reason for these characteristics is the expansion of É-Zn(OH)2 lattice due to temperature, causing difficulties in the dehydration of adjacent âOH. Simultaneously, the larger specific surface area favors the dissolution of É-Zn(OH)2. Based on this precursor, well-dispersed ZnO whiskers with 9.82 µm in length, 242.38 nm in diameter, and an average aspect ratio of 41 are successfully synthesized through a SDSN-assisted hydrothermal process at 80 °C. The process has an extremely high solid content of 2.5% (mass ratio of ZnO to solution) and an overall yield of 92%, which offers a new approach for the scaled synthesis of high aspect ratio ZnO whiskers by liquid-phase method.
RESUMO
BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.
Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos CardíacosRESUMO
Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N2 O, and N2 ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade. The estimated denitrification N losses as a percentage of N application from 2009 to 2018 were 11.8 ± 4.0% for single rice, 12.4 ± 3.7% for early rice, and 11.6 ± 3.1% for late rice. The model results showed that the spatial heterogeneity of denitrification N losses is primarily driven by edaphic and climatic factors rather than by management practices. In particular, diffusion and production rates emerged as key contributors to the variation of denitrification N losses. These findings humanize a 38.9 ± 4.8 kg N ha-1 N loss by denitrification and challenge the common hypothesis that substrate availability drives the pattern of N losses by denitrification in rice fields.
Assuntos
Oryza , Desnitrificação , Projetos de Pesquisa , Nitrogênio , ChinaRESUMO
To investigate the effect of long-distance organic ligand on electronic coupling between metallic atoms, the mononuclear and dinuclear complexes [Cp(dppe)Fe(apc)] (1), [{Cp(dppe)Fe}2(µ-adpc)] (2), [{CpMe5(dppe)Fe}2(µ-adpc) (3) and their oxidized complexes [Cp(dppe)Fe(apc)][PF6] (1[PF6]), [{Cp(dppe)Fe}2(µ-adpc)][PF6] (2[PF6]2), [{CpMe5(dppe)Fe}2(µ-adpc)][PF6]2 (3[PF6]2) (Cp=1,3-cyclopentadiene, CpMe5=1,2,3,4,5-pentamethylcyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane), apc-=4-azo(phenylcyanamido)benzene and adpc2-=4,4'-azodi(phenylcyanamido)) were synthesized and characterized by cyclic voltammetry, UV-vis, single-crystal X-ray diffraction and Mössbauer spectra. Electrochemical measurements showed no electronic coupling between the two terminal Fe units, However, the investigation results of the magnetic properties of the two-electron oxidized complexes indicate the presence of moderate antiferromagnetic coupling across 18â Å distance.
RESUMO
Three novel diterpenoid alkaloids, comprising two C19 -diterpenoid alkaloids (1 and 2) and one C20 -diterpenoid alkaloid (3), were isolated from Delphinium ajacis, alongside the six known compoundsâ (4-9). Their structures were elucidated by spectroscopic methods (MS, UV, IR, 1D and 2D NMR) and chemical properties. Simultaneously, the anti-inflammatory properties of all compoundsâ (1-9) was conducted, focusing on nitric oxide (NO) production in LPS-induced BV-2 cells. The results indicated compoundsâ 1-3, 7, and 8 have potential anti-inflammatory activity.
Assuntos
Alcaloides , Delphinium , Diterpenos , Delphinium/química , Espectroscopia de Ressonância Magnética , Alcaloides/farmacologia , Alcaloides/química , Diterpenos/farmacologia , Diterpenos/química , Anti-Inflamatórios/farmacologia , Estrutura MolecularRESUMO
In this study, nine endophytic fungi capable of producing multiple phenolic compounds were screened and identified from 152 fungi isolated from pigeon pea in a natural habitat (Honghe, Yunnan Province, China). Talaromyces neorugulosus R-209 exhibited the highest potential for phenolic compound production. L-phenylalanine feeding was used to enhance phenolic compound production in T. neorugulosus R-209 cultures. Under the optimal feeding conditions (l-phenylalanine dose of 0.16 g/L and feeding phase of 6 days), the yields of genistein, apigenin, biochanin A, and cajaninstilbene acid increased by 15.59-fold, 7.20-fold, 25.93-fold, and 10.30-fold over control, respectively. T. neorugulosus R-209 fed with l-phenylalanine was found to be stable in the production of phenolic compounds during ten successive subcultures. Moreover, bioactivities of extracts of T. neorugulosus R-209 cultures were significantly increased by l-phenylalanine feeding. Overall, l-phenylalanine feeding strategy made T. neorugulosus R-209 more attractive as a promising alternative source for the production of health-beneficial phenolic compounds in the nutraceutical/medicinal industries.
Assuntos
Cajanus , Endófitos , Fenóis , Fenilalanina , Talaromyces , Talaromyces/metabolismo , Fenilalanina/metabolismo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Fenóis/metabolismo , Cajanus/microbiologia , China , EcossistemaRESUMO
BACKGROUND: Ghost cell odontogenic carcinoma (GCOC) is a rare malignancy characterized by the presence of ghost cells, preferably in the maxilla. Only slightly more than 50 case reports of GCOC have been documented to date. Due to the rarity of this tumor and its nonspecific clinical criteria, there is a heightened risk of misdiagnosis in clinical examination, imaging findings, and pathology interpretation. CASE PRESENTATION: A 50-year-old male patient presented to the hospital due to experiencing pain in his lower front teeth while eating for the past 2 months. Upon examination, a red, hard, painless mass was found in his left lower jaw, measuring approximately 4.0 cm × 3.5 cm. Based on the malignant histological morphology of the tumor and the abundant red-stained keratinized material, the preoperative frozen section pathology misdiagnosed it as squamous cell carcinoma (SCC). The surgical resection specimen pathology via paraffin section revealed that the tumor was characterized by round-like epithelial islands within the fibrous interstitium, accompanied by a large number of ghost cells and some dysplastic dentin with infiltrative growth. The malignant components displayed marked heterogeneity and mitotic activity. Additionally, a calcified cystic tumor component of odontogenic origin was observed. Hemorrhage, necrosis, and calcifications were present, with a foreign body reaction around ghost cells. Immunoreactivity for ß-catenin showed strong nuclear positivity in tumor cells, while immunostaining was completely negative for p53. The Ki67 proliferation index was approximately 30-40%. The tumor cells exhibited diffuse CK5/6, p63, and p40 immunoreactivity, with varying immunopositivity for EMA. Furthermore, no BRAFV600E mutation was identified by ARMS-PCR. The final pathology confirmed that the tumor was a mandible GCOC. CONCLUSION: We have reported and summarized for the first time the specific manifestations of GCOC in frozen section pathology and possible pitfalls in misdiagnosis. We also reviewed and summarized the etiology, pathological features, molecular characteristics, differential diagnosis, imaging features, and current main treatment options for GCOC. Due to its rarity, the diagnosis and treatment of this disease still face certain challenges. A correct understanding of the pathological morphology of GCOC, distinguishing the ghost cells and the secondary stromal reaction around them, is crucial for reducing misdiagnosis rates.
Assuntos
Carcinoma de Células Escamosas , Tumores Odontogênicos , Masculino , Humanos , Pessoa de Meia-Idade , Secções Congeladas , Mandíbula , Tumores Odontogênicos/diagnóstico , Calcificação FisiológicaRESUMO
PURPOSE: The accuracy of intraocular lens (IOL) calculations is one of the key indicators for determining the success of cataract surgery. However, in highly myopic patients, the calculation errors are relatively larger than those in general patients. With the continuous development of artificial intelligence (AI) technology, there has also been a constant emergence of AI-related calculation formulas. The purpose of this investigation was to evaluate the accuracy of AI calculation formulas in calculating the power of IOL for highly myopic patients. METHODS: We searched the relevant literature through August 2023 using three databases: PubMed, EMBASE, and the Cochrane Library. Six IOL calculation formulas were compared: Kane, Hill-RBF, EVO, Barrett II, Haigis, and SRK/T. The included metrics were the mean absolute error (MAE) and percentage of errors within ± 0.25 D, ± 0.50 D, and ± 1.00 D. RESULTS: The results showed that the MAE of Kane was significantly lower than that of Barrett II (mean difference = - 0.03 D, P = 0.02), SRK/T (MD = - 0.08 D, P = 0.02), and Haigis (MD = - 0.12 D, P < 0.00001). The percentage refractive prediction errors for Kane at ± 0.25 D, ± 0.50 D, and ± 1.00 D were significantly greater than those for SRK/T (P = 0.007, 0.003, and 0.01, respectively) and Haigis (P = 0.009, 0.0001, and 0.001, respectively). No statistically significant differences were noted between Hill-RBF and Barret, but Hill-RBF was significantly better than SRK/T and Haigis. CONCLUSION: The AI calculation formulas showed more accurate results compared with traditional formulas. Among them, Kane has the best performance in calculating IOL degrees for highly myopic patients.
Assuntos
Inteligência Artificial , Lentes Intraoculares , Refração Ocular , Acuidade Visual , Humanos , Refração Ocular/fisiologia , Óptica e Fotônica , Biometria/métodos , Reprodutibilidade dos Testes , Miopia Degenerativa/fisiopatologia , Miopia Degenerativa/diagnóstico , Miopia/fisiopatologia , Miopia/diagnósticoRESUMO
The current outbreak of monkeypox virus (MPXV) has become a public health emergency of international concern that highlights the need for rapid, sensitive MPXV diagnostic assays. Here, we combined isothermal multiple cross displacement amplification (MCDA) with nanoparticle-based lateral flow biosensor (LFB) to devise a diagnostic test for the diagnosis of MPXV infection (called MPXV-MCDA-LFB) and differentiation of West and Central African MPXV isolates. The MPXV-MCDA-LFB protocol conducts isothermal MCDA reaction for DNA templates followed by LFB detection of preamplification target sequences. Two MCDA primer sets were designed targeting the D41L and ATI genes of Central and West African MPXV isolates, respectively, and the optimal condition of two MCDA reactions was 64°C for 30 min. The two MCDA reactions were decoded by LFB, which was devised for detecting three targets, including two amplicons yielded from two MCDA reactions and a chromatography control. Thus, the MPXV-MCDA-LFB assay could be completed within 50 min including rapid template preparation (15 min), MCDA reaction (30 min) and reporting of result (<5 min). The MPXV-MCDA-LFB method is very sensitive and can detect the target genes (D14L and ATI) with as low as five copies of plasmid template per reaction and 12.5 copies of pseudotyped virus in human blood samples. The MPXV-MCDA-LFB assay does not cross-react with non-MPXV templates, validating its specificity. Therefore, the MPXV-MCDA-LFB assay developed here is a useful tool for rapid and reliable diagnosis of MPXV infection.
Assuntos
Técnicas Biossensoriais , Nanopartículas , Humanos , Monkeypox virus , Técnicas de Amplificação de Ácido Nucleico/métodos , Nanopartículas/química , Técnicas Biossensoriais/métodos , Sensibilidade e EspecificidadeRESUMO
Emerging and re-emerging viruses like influenza virus pose a continuous global public health threat. Vaccines are one of the most effective public health strategies for controlling infectious diseases. However, little is known about the immunological features of vaccination at the single-cell resolution, including for influenza vaccination. Here, we report the single-cell transcriptome atlas of longitudinally collected peripheral blood mononuclear cells (PBMCs) in individuals immunized with an inactivated influenza vaccine. Overall, vaccination with the influenza vaccine only had a small impact on the composition of peripheral immune cells, but elicited global transcriptional changes in multiple immune cell subsets. In plasma and B cell subsets, transcriptomic changes, which were mostly involved in antibody production as well as B cell activation and differentiation, were observed after influenza vaccinations. In influenza-vaccinated individuals, we found a reduction in multiple biological processes (e.g., interferon response, inflammatory response, HLA-I/II molecules, cellular apoptosis, migration, and cytotoxicity, etc.,) 7 days postvaccination in multiple immune cell subsets. However, 14 days postvaccination, these levels returned to similar levels observed in prevaccination samples. Additionally, we did not observe significant upregulation of pro-inflammatory response genes and key thrombosis-related genes in influenza-vaccinated individuals. Taken together, we report a cell atlas of the peripheral immune response to influenza vaccination and provide a resource for understanding the immunological response mechanisms of influenza vaccination.
Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Transcriptoma , Leucócitos Mononucleares , Anticorpos Antivirais , Vacinação , Vacinas de Produtos InativadosRESUMO
We report a trinuclear iron(III) cyanido-bridged complex trans-[CpMe3 FeIII (dppe)(CN)]2 [FeIII (LN4 )][PF6 ]4 (2[PF6 ]4 ) as the oxidation product of binuclear complex [CpMe3 (dppe)FeII CN-FeIII (LN4 )][PF6 ] (1[PF6 ]) (CpMe3 =1, 2, 4-trimethyl-1,3-cyclo-pentadienyl, dppe=1,2-bis(diphenylphosphino)ethane, LN4 =pentane-2,4-dione-bis(S-methylisothiosemicarbazonato). Complex 1[PF6 ] possesses an intermediate-spin five-coordinated FeIII (S=3/2) which couples antiferromagnetically to the π-radical ligand (Lâ N4 )2- and shows a LMCT (ligand to metal charge transfer) transition from (Lâ N4 )2- to FeIII and the FeII âFeIII MMCT transition. Upon oxidation of 1[PF6 ], (Lâ N4 )2- loses one electron to be the strong electron-attracting ligand (LOx N4 )- and the intermediate-spin five-coordinated FeIII (S=3/2) becomes a low-spin six-coordinated FeIII (S=1/2) in 2[PF6 ]4 . Also interestingly, 2[PF6 ]4 presents the coexistence of three different spin states (one S=3/2 and two S=1/2) and an uncommon FeIII â(LOx N4 )- MLCT transition, confirmed by the experimental results and supported by the TDDFT calculations.
RESUMO
INTRODUCTION: This study aimed to evaluate the relationship between 2-h post-load minus fasting plasma glucose (2hPG-FPG) and 1-year clinical outcomes, such as death, stroke recurrence, and modified Rankin Scale (mRS) ≥2-3 among acute ischemic stroke (AIS) patients without diabetes mellitus (DM) history. METHODS: 1,214 AIS patients without DM history, obtained from ACROSS-China, were divided into 4 quartiles, based on 2hPG-FPG measurements obtained 14 days post-admission. Four models were constructed using multivariate Cox and logistic regression analyses, based on the inclusion of age, gender, trial of ORG 10172 in acute stroke treatment, NIH Stroke Scale scores (model 1), plus 10 other clinical parameters (model 2), plus newly diagnosed DM (NDDM) post-admission (model 3), plus 2hPG and FPG (model 4). Associations found from those 4 models between 2hPG-FPG and 1-year clinical outcomes were confirmed via stratification, multiplicative interaction, sensitivity, and restricted cubic spline analyses. RESULTS: The highest quartile of 2hPG-FPG, after adjusting for variables, such as stroke severity (model 2), was independently associated with death, stroke recurrence, and mRS ≥2-3 (odds ratio [OR] = 3.95, 2.96, 4.15, and 4.83, respectively, all p < 0.0001). Increased 2hPG-FPG remained independently associated with mRS ≥2-3 in models 3-4, as well as increased mRS ≥2 under stratification analyses among both non-NDDM and NDDM patients. CONCLUSION: 2hPG-FPG is a relatively specific indicator of poorer 1-year clinical prognoses among AIS patients, independent of NDDM, 2hPG, and FPG post-hospital admission. Therefore, the oral glucose tolerance test could be a useful approach for detecting a higher likelihood for developing poorer prognoses among patients without DM history.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Glicemia , Diabetes Mellitus/diagnóstico , AVC Isquêmico/diagnóstico , AVC Isquêmico/terapia , Prognóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapiaRESUMO
A series of trimetallic complexes [FeIII(µ-L)(py)]2MII(py)n (n = 2, MII = MnII, 1; FeII, 2; CoII, 3; ZnII, 4; n = 3, MII = CdII, 5) with a new bridging ligand L4- (deprotonated 1,2-N1,N2-bis(2-mercaptoanil) oxalimidic acid) were synthesized and fully characterized by elemental analysis, single-crystal X-ray crystallography, IR, and Mössbauer spectra. Interestingly, the bridging ligand was obtained by oxidative addition of the (gmaâ¢)3- ligand from the mononuclear precursor Fe(gma)py (gma = glyoxal-bis(2-mercaptoanil)). In the obtained complexes, the bridging ligand L4- coordinates to the terminal FeIII ions (intermediate-spin with SFe = 3/2) by the N, S atoms, and coordinate to the central metal MII ion by the four O atoms. The resonance structure of the bridging ligand can be described as the two 4π-electron delocalized systems connected by one single-bond (C1-C2), which is different from the electronic structure of the precursor Fe(gma)py. Remarkably, the magnetic coupling interaction can be regulated through the central metal. The ferromagnetic coupling constant J gradually decreases as MII changes from FeII to CoII and MnII, while the paramagnetic behaviors are presented when MII = ZnII and CdII, confirmed by the magnetic susceptibility measurements and further supported by using the PHI program. Furthermore, the bridging ligand to the terminal FeIII charge transfer (LMCT) transitions emerged in all complexes but the central FeII to terminal FeIII charge transfer (MMCT) only presented in complex 2, strongly supported by the UV/vis-NIR electronic spectra and TDDFT calculations.
RESUMO
OBJECTIVE: Community-acquired pneumonia (CAP) is the primary cause of death for children under five years of age globally. Hence, it is essential to investigate new early biomarkers and potential mechanisms involved in disease severity. METHODS: Proteomics combined with metabolomics was performed to identify biomarkers suitable for early diagnosis of severe CAP. In the training cohort, proteomics and metabolomics were performed on serum samples obtained from 20 severe CAPs (S-CAPs), 15 non-severe CAPs (NS-CAPs) and 15 healthy controls (CONs). In the verification cohort, selected biomarkers and their combinations were validated using ELISA and metabolomics in an independent cohort of 129 subjects. Finally, a combined proteomics and metabolomics analysis was performed to understand the major pathological features and reasons for severity of CAP. RESULTS: The proteomic and metabolic signature was markedly different between S-CAPs, NS-CAPs and CONs. A new serum biomarker panel including 2 proteins [C-reactive protein (CRP), lipopolysaccharide (LBP)] and 3 metabolites [Fasciculol C, PE (14:0/16:1(19Z)), PS (20:0/22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z))] was developed to identify CAP and to distinguish severe pneumonia. Pathway analysis of changes revealed activation of the cell death pathway, a dysregulated complement system, coagulation cascade and platelet function, and the inflammatory responses as contributors to tissue damage in children with CAP. Additionally, activation of glycolysis and higher levels of nucleotides led to imbalanced deoxyribonucleotide pools contributing to the development of severe CAP. Finally, dysregulated lipid metabolism was also identified as a potential pathological mechanism for severe progression of CAP. CONCLUSION: The integrated analysis of the proteome and metabolome might open up new ways in diagnosing and uncovering the complexity of severity of CAP.
Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Proteômica , Criança , Pré-Escolar , Humanos , Coagulação Sanguínea , Proteína C-Reativa , Morte Celular , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/diagnóstico , Metabolômica , Pneumonia/sangue , Pneumonia/diagnósticoRESUMO
Pigeon pea hairy root cultures (PPHRCs) have been proven to be a promising alternative for the production of health-beneficial phenolic compounds, such as the most important health-promoting compound, i.e., cajaninstilbene acid (CSA). In this study, PPHRCs were cocultured with live Aspergillus fungi for further improving phenolic productivity via biological elicitation. Aspergillus oryzae CGMCC 3.951 (AO 3.951) was found to be the optimal fungus that could achieve the maximum increment of CSA (10.73-fold increase) in 42-day-old PPHRCs under the inoculum size of mycelia 0.50% and cocultivation time 36 h. More precisely, the contents of CSA in hairy roots and culture media after fungal elicitation increased by 9.87- and 62.18-fold over control, respectively. Meanwhile, the contents of flavonoid glycosides decreased, while aglycone yields increased upon AO 3.951 elicitation. Moreover, AO 3.951 could trigger the oxidative stress and pathogen defense response thus activating the expression of biosynthesis- and ABC transporter-related genes, which contributed to the intracellular accumulation and extracellular secretion of phenolic compounds (especially CSA) in PPHRCs. And PAL2, 4CL2, STS1, and I3'H were likely to be the potential key enzyme genes regulating the biosynthesis of CSA, and ABCB11X1-1, ABCB11, and ABCG24X2 were closely related to the transmembrane transport of CSA. Overall, the cocultivation approach could make PPHRCs more commercially attractive for the production of high-value phenolic compounds such as CSA and flavonoid aglycones in nutraceutical/medicinal fields. And the elucidation of crucial biosynthesis and transport genes was important for systematic metabolic engineering aimed at increasing CSA productivity. KEY POINTS: ⢠Cocultivation of PPHRCs and live fungi was to enhance CSA production and secretion. ⢠PPHRCs augmented CSA productivity 10.73-fold when cocultured with AO 3.951 mycelia. ⢠Several biosynthesis and transport genes related to CSA production were clarified.
Assuntos
Cajanus , Cajanus/metabolismo , Técnicas de Cocultura , Pisum sativum/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Aspergillus/metabolismo , Raízes de Plantas/microbiologiaRESUMO
BACKGROUND: Visual instruments are essential to ensure high-quality surgical outcomes for minimally invasive procedures and have gradually become the focus of research. Recently, a novel visual auxiliary instrument, a 3-dimensional exoscope (EX), has been applied for spinal surgery. However, its advantages over other auxiliary means (OAMs) in anterior cervical surgery need to be assessed. OBJECTIVE: To compare and evaluate the clinical outcomes of EX and OAMs in anterior cervical spine surgery using a meta-analysis and to provide the latest clinical evidence. METHODS: PubMed, Embase, Cochrane Library, Web of Science, CNKI, and Wanfang Database were systematically reviewed for relevant literature published prior to January 21, 2023. Two researchers independently screened the literature, extracted data, and assessed bias risk in the included literature. Review Manager software (version 5.4; the Cochrane Collaboration) was used to conduct the meta-analysis. RESULTS: five studies, one prospective and four retrospective cohort studies, with a total of 349 patients (154 in the EX group and 195 in the OAMs group) were included. A meta-analysis showed that compared to OAMs, EX-assisted anterior cervical spine surgery resulted in less intraoperative hemorrhage [WMD = -8.96, 95% CI (-14.21, -3.71), P = 0.0008]. Nevertheless, no significant differences in VAS scores, JOA scores, operation time, hospitalization time, and complication rate were observed between the two groups (P > 0.05). CONCLUSION: EX and OAMs are equally safe and effective for anterior cervical spine surgery; however, compared to OAMs, EX results in less intraoperative hemorrhage.
Assuntos
Vértebras Cervicais , Fusão Vertebral , Humanos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Fusão Vertebral/métodos , Perda Sanguínea Cirúrgica , Resultado do TratamentoRESUMO
BACKGROUND: The omnipresence of human phthalate (PAE) exposure is linked to various adverse health issues, including breast cancer. However, the effects of low-dose PAE exposure on breast cancer stem cells (BCSCs) and the underlying mechanism remain unexplored. METHODS: BCSCs from breast cancer cell lines (MDA-MB-231 and MCF-7) were enriched using a tumorsphere formation assay. Gene and protein expression was detected by measurement of quantitative real-time reverse transcription PCR, western blot, and immunofluorescence assays. Transient transfection assays were used to evaluate the involvement of Gli1, a signaling pathway molecule and ΔNp63α, an oncogene in influencing the PAE-induced characteristics of BCSCs. RESULTS: PAE (butylbenzyl phthalate, BBP; di-butyl phthalate, DBP; di-2-ethylhexyl phthalate, DEHP) exposure of 10-9 M significantly promoted the tumorsphere formation ability in BCSCs. Breast cancer spheroids with a 10-9 M PAE exposure had higher levels of BCSC marker mRNA and protein expression, activated sonic hedgehog (SHH) pathway, and increased mRNA and protein levels of an oncogene, ΔNp63α. Furthermore, suppression of the SHH pathway attenuated the effects of PAEs on BCSCs. And the overexpression of ΔNp63α enhanced PAE-induced characteristics of BCSCs, while low expression of ΔNp63α inhibited the promotion effects of PAEs on BCSCs and the SHH pathway. CONCLUSION: Low-dose PAE exposure promoted the stem cell properties of BCSCs in a ΔNp63α- and SHH-dependent manner. The influence of low-dose exposure of PAEs and its relevance for the lowest observed effect concentrations requires further investigation, and the precise underlying mechanism needs to be further explored.
Assuntos
Neoplasias da Mama , Proteínas Hedgehog , Humanos , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular TumoralRESUMO
OBJECTIVES: To explore the molecular characteristics of Staphylococcus aureus (S. aureus) in children, and to compare the molecular characteristics of different types of strains (infection and colonization strains) so as to reveal pathogenic molecular markers of S. aureus. METHODS: A cross-sectional study design was used to conduct nasopharyngeal swab sampling from healthy children in the community and clinical samples from infected children in the hospital. Whole genome sequencing was used to detect antibiotic resistance genes and virulence genes. A random forest method to used to screen pathogenic markers. RESULTS: A total of 512 S. aureus strains were detected, including 272 infection strains and 240 colonization strains. For virulence genes, the carrying rates of enterotoxin genes (seb and sep), extracellular enzyme coding genes (splA, splB, splE and edinC), leukocytotoxin genes (lukD, lukE, lukF-PV and lukS-PV) and epidermal exfoliating genes (eta and etb) in infection strains were higher than those in colonization strains. But the carrying rates of enterotoxin genes (sec, sec3, seg, seh, sei, sel, sem, sen, seo and seu) were lower in infection strains than in colonization strains (P<0.05). For antibiotic resistance genes, the carrying rates of lnuA, lnuG, aadD, tetK and dfrG were significantly higher in infection strains than in colonization strains (P<0.05). The accuracy of cross-validation of the random forest model for screening pathogenic markers of S. aureus before and after screening was 69% and 68%, respectively, and the area under the curve was 0.75 and 0.70, respectively. The random forest model finally screened out 16 pathogenic markers (sem, etb, splE, sep, ser, mecA, lnuA, sea, blaZ, cat(pC233), blaTEm-1A, aph(3')-III, ermB, ermA, ant(9)-Ia and ant(6)-Ia). The top five variables in the variable importance ranking were sem (OR=0.40), etb (OR=3.95), splE (OR=1.68), sep (OR=3.97), and ser (OR=1.68). CONCLUSIONS: The random forest model can screen out pathogenic markers of S. aureus and exhibits a superior predictive performance, providing genetic evidence for tracing highly pathogenic S. aureus and conducting precise targeted interventions.