Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(46): 20489-20498, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743925

RESUMO

The application of metal-organic frameworks (MOFs) as SERS-active platforms in multiplex volatile organic compounds (VOCs) detection is still unexplored. Herein, we demonstrate that MIL-100 (Fe) serves as an ideal SERS substrate for the detection of VOCs. The limit of detection (LOD) of MIL-100(Fe) for toluene sensing can reach 2.5 ppm, and can be even further decreased to 0.48 ppb level when "hot spots" in between Au nanoparticles are employed onto MIL-100 (Fe) substrate, resulting in an enhancement factor of 1010 . Additionally, we show that MIL-100(Fe) substrate has a unique "sensor array" property allowing multiplex VOCs detection, with great modifiability and expandability by doping with foreign metal elements. Finally, the MIL-100(Fe) platform is utilized to simultaneously detect the different gaseous indicators of lung cancer with a ppm detection limit, demonstrating its high potential for early diagnosis of lung cancer in vivo.

2.
Talanta ; 269: 125469, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043337

RESUMO

Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.


Assuntos
Nanoestruturas , Telomerase , Humanos , Fluorescência , Telomerase/metabolismo , DNA
3.
Biosens Bioelectron ; 219: 114757, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265250

RESUMO

Telomerase (TE) is recognized as a potential biomarker for early diagnosis, monitoring and treatment of cancer. At present, most of the methods for TE detection are only applicable to in vitro assays, and unsuitable for in vivo applications. Though a few intracellular probes have been reported to have good specificity for TE, they do not involve signal amplification, which hinders their applicability in scenarios requiring high sensitivity. It is rather challenging to develop highly sensitive biosensors for intracellular TE detection due to the difficulty in design TE probes with both high specificity and compatibility with signal amplification in living cells. Herein, a highly sensitive and selective three-dimensional DNAzyme motor for monitoring of TE activity in living cells was developed by innovatively integrating TE-mediated chain replacement reaction with a three-dimensional DNA walker. Specifically, the DNAzyme motor was constructed by assembling both DNAzyme substrates and swing arms made up of a hairpin-structured DNAzyme and a telomeric primer onto gold nanoparticles. TE in cells can activate the DNAzyme motor to carry out continuous chain replacement and substrate cutting reactions, and hence realize signal amplification in living cells. The DNAzyme motor was successfully utilized to monitor the dynamic changes of TE activity in four types of cells. Due to the advantages of simple synthesis, good biocompatibility and high sensitivity and specificity for TE, the proposed DNAzyme motor is expected to have great application potential in the early diagnosis of cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa