RESUMO
Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.
RESUMO
Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.
Assuntos
Boroidretos , Boro , Ferro , Ferro/química , Boroidretos/química , Boro/química , Cromo/química , Elétrons , Ligas/químicaRESUMO
In this research, the effects of peracetic acid (PAA), polymeric flocculants, and their combined conditioning on improving the dewatering performance were comprehensively evaluated. The results showed that sludge cake moisture content, capillary suction time (CST), and specific resistance to filtration (SRF) were 70.6%, 48.1 s, and 3.42 × 1012 m/kg after adding 0.10 g/gMLSS PAA for 50 min, representing reductions of 12.60%, 40.32%, and 33.98%, respectively. Additionally, conditioning of sludge with polyferric sulfate (PFS), polyaluminum chloride (PAC), and cationic polyacrylamide (CPAM) enhanced sludge properties in the following order: CPAM > PAC > PFS. After the PAA oxidation and re-flocculation process, the optimal dosages of PFS, PAC, and CPAM were reduced to 1.5 g/L, 0.9 g/L, and 0.04 g/L, respectively. The sludge dewatering performance significantly improved, with sludge cake moisture content measuring 65.8%, 66.3%, and 61.7%, respectively. Moreover, the spatial multi-porous skeleton structures were formed via re-flocculation to improve the sludge dewatering. Furthermore, economic evaluation validated that the pre-oxidation and re-flocculation process could be considered an economically viable option. These research findings could serve as a valuable reference for practical engineering applications.
Assuntos
Floculação , Ácido Peracético , Esgotos , Esgotos/química , Ácido Peracético/química , Oxirredução , Polímeros/química , Filtração , Eliminação de Resíduos Líquidos/métodos , Porosidade , Resinas Acrílicas/químicaRESUMO
Photocatalytic water decontamination has emerged as a highly promising technology for efficient and rapid water treatment, harnessing sustainable solar energy as its driving force. In this study, we prepared visible-light active Bi2S3/CoS2 composites for the degradation of naproxen (NPX) and the inactivation of Escherichia coli (E. coli). The homogeneous dispersion of CoS2 was stably integrated with Bi2S3, resulting in a significant enhancement of the specific surface area, efficient utilization of visible light, and effective separation of photogenerated charge carriers. Consequently, this synergistic photocatalytic system greatly facilitated the successful degradation of NPX and the inactivation of E. coli under visible-light irradiation. Compared to the pure Bi2S3 and CoS2 catalysts, the Bi2S3/CoS2 (1:2) composites displayed significantly enhanced photodegradation activity, achieving 96.46% (k = 0.2847 min-1) degradation of NPX within 90 min and maintaining good recyclability with no significant decline after six successive cycles. Additionally, the photocatalytic inactivation of E. coli results indicated that Bi2S3/CoS2 composites exhibited excellent performance, leading to the inactivation of 7 log10 cfu mL-1 of bacterial cells after 150 min of visible-light exposure. Scanning Electron Microscopy (SEM) and K+ ions leakage tests demonstrated that the destruction of the E. coli cell membrane structure resulted in cell death. The outcomes of this work suggest that Bi2S3/CoS2 composites hold significant potential for treating water contaminated with antibiotic and microbial pollutants.
Assuntos
Escherichia coli , Naproxeno , Naproxeno/farmacologia , Naproxeno/metabolismo , Luz , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Microscopia Eletrônica de Varredura , CatáliseRESUMO
Activated alumina (Al2O3) has been widely used to remove aqueous anionic pollutants such as phosphate for preventing the eutrophication phenomenon. While Al2O3, as a fine powder material, cannot be stably packed into continuous flow treatment, which limits its practical applications. Herein, we proposed a new strategy in which Al2O3 was encapsulated by calcium alginate (CA) to fabricate Al2O3/CA composite, which has relatively large particle size and can be suitable for application in columns. The BET surface area of Al2O3/CA increased to 51.73 m2/g compared with 37.31 m2/g of Al2O3. The maximum adsorption capacity of phosphate on Al2O3/CA was estimated at 1.92-fold compared with that of pure Al2O3 by Langmuir fitting. The main mechanism of phosphate adsorption was the formation of aluminum phosphate precipitation. Moreover, the column studies showed that the adsorption of phosphate on Al2O3/CA was affected by the amount of outer calcium alginate, bed height, influent flow rates and phosphate concentration. This study demonstrated that Al2O3/CA composite has better adsorption capacity and can be used in the dynamic adsorption system as a promising approach for phosphate removal from water.
Assuntos
Alginatos , Poluentes Químicos da Água , Adsorção , Cinética , Fosfatos , ÁguaRESUMO
Interfacial photo-vapor conversion has been suggested as a cost-effective and sustainable technology for seawater desalination. However, the conversion performance was still limited by some drawbacks, like salt accumulation and poor mechanical stability. Herein, a scalable MoS2 -based porous hydrogel (SMoS2 -PH) with good mechanical stability and salt resistance was successfully constructed through a crosslinking foaming polymerization method. With the high porosity (92.63 %), the SMoS2 -PH performed an impressive evaporation rate of 3.297â kg m-2 h-1 and photothermal conversion efficiency of 93.4 % under 1-sun illumination. Most importantly, the SMoS2 -PH could maintain high and stable photothermal properties for 15â days on the surface of seawater. We believe that the excellent salt resistance, the high photothermal conversion efficiency, the ease of scale preparation method and the available commercial MoS2 make the SMoS2 -PH a promising device for full-scale seawater desalination.
RESUMO
Reduced graphene oxide (RGO) as an electron-conductive medium and photosensitizer have been widely used to construct efficient RGO/semiconductor photocatalysts for solar energy conversion; however, the role of RGO has been largely underestimated. Herein, the surface plasmon resonance (SPR) effect, thermal effect, support effect, and size effect of Au/RGO are demonstrated to play important roles in enhancing the photocatalytic activity, which has not been considered previously. Au/RGO nanocomposites, synthesized via a facile wet chemistry route, exhibit an excellent visible light photocatalytic performance for selective oxidation of benzylic alcohols. A collection of joint techniques and control experiments have been employed to explain the SPR effect, thermal effect, support effect, and size effect over the Au/RGO photocatalyst. The possible reaction mechanism for the photocatalytic and thermocatalytic selective oxidation of alcohols over Au/RGO has also been discussed.
RESUMO
BACKGROUND: Organic dye pollution in water has become a major source of environmental pollution. Mn(III/IV) oxides have attracted a great deal of attention to remove organic dye pollutants due to their unique structures and physicochemical properties. Numerous studies have reported the removal of dye by various Mn(III/IV) oxides through catalytic degradation and adsorption. The crystalline structures of manganese oxides and solution pH may exert substantial impact on the removal of dyes. However, few studies have focused on the oxidative degradation of RhB dye using Mn(III/IV) oxides with different crystal structures during a spontaneous reaction. In the present study, three manganese oxides with different crystal type (α-MnO2, ß-MnO2, and δ-MnO2) were prepared by refluxing process to decolorize RhB dye in various pH solutions. RESULTS: The results showed that the decolorization efficiencies of RhB for the three manganese oxides all increase with decrease solution pH. α-MnO2 exhibited highest activity and could efficiently degrade RhB at pH 2-6. The degradation of RhB by ß-MnO2 and δ-MnO2 could be observed at pH 2-3, and only little adsorption RhB on manganese oxides could be found at pH 4-6. The UPLC/MS analysis suggests that the decolorization of RhB by manganese oxides consists of three main stages: (1) cleavage of the ethyl groups from RhB molecular to form Rh; (2) further destruction of -COOH and -CNH2 from Rh to form the small molecular substances; (3) mineralization of the small molecular substances into CO2, H2O, NO3 (-) and NH4 (+). CONCLUSIONS: Overall, these results indicate that α-MnO2 may be envisaged as efficient oxidants for the treatment of organic dye-containing wastewater under acid conditions.
RESUMO
Nanocomposites with core-shell structure usually exhibit excellent catalytic properties due to unique interfaces and synergistic effect among composites. In this study, Au-Pd bimetallic nanoparticles (NPs) with core-shell structure (Au-Pd cs) by using Au NPs as core and Pd as shell were successfully fabricated and, for the first time, were used to investigate the dechlorination of diclofenac (DCF) at H2 atmosphere in water at room temperature. The degradation products were studied as well by using HPLC/Q-ToF MS/MS. The operational factors such as pH and composition of the Au-Pd cs were also studied. The results showed that nearly 100% of DCF (30â mg L(-1), 50â mL, pH=7) was dechlorinated in 4.5â h by 10â mL of 56â mgâ L(-1) of Au-Pd cs. Ninety per cent of DCF was degraded in 6.5â h by the mixture of Au and Pd NPs. However, the individual Au NPs had no obvious effect in degrading DCF and the monometallic Pd NPs with comparable concentration only degraded less than 20% of DCF. Furthermore, the reaction mechanism of this catalytic process was studied in detail. It was found that the degradation was a second-order exponential reaction. The two main degradation products were obtained by cleaving the carbon-halogen bond of DCF and this made the degradation products more environmentally friendly.
Assuntos
Diclofenaco/química , Ouro/química , Chumbo/química , Nanocompostos/química , Poluentes Químicos da Água/química , Cinética , Modelos QuímicosRESUMO
Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.
Assuntos
Água Potável , Microplásticos , Humanos , Plásticos , Levivirus , Raios Ultravioleta , Substâncias Húmicas , Cloreto de PolivinilaRESUMO
The global shortage of freshwater resources is becoming more and more serious; therefore, it is necessary to obtain freshwater by desalinating seawater resources. Solar-driven interfacial photothermal evaporation, which is an environmentally friendly and energy-efficient technology, has been used to desalinate seawater for water purification and production. Herein, the IPCA hydrogel with abundant pores consisting of carbon ink as a photothermal conversion material and PU sponge loaded with calcium alginate as a water transport medium was successfully prepared and used to obtain portable water. The parameters of the synthesized IPCA are optimized by Response Surface Methodology analysis, and it was found that the IPCA exhibits a high evaporation efficiency of 3.779 kg m-2 h-1 and up to 95.98% of photothermal conversion capacity under one solar intensity. It maintains a high evaporation efficiency and salt resistance after 10 cycles of evaporation in actual seawater. Moreover, IPCA shows a high removal of various organic dye pollutants in wastewater. The results suggest a new approach for the preparation of simple, efficient, and green solar evaporators in practical application.
RESUMO
A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.
Assuntos
Recuperação e Remediação Ambiental/métodos , Permanganato de Potássio/química , Ácidos Esteáricos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Água Subterrânea/química , Compostos de Manganês/química , Óxidos/químicaRESUMO
Excessive phosphorus in water would cause eutrophication and deterioration of the ecological environment. Herein, the La-MOFs/Al2O3 composite was successfully prepared by the in situ hydrothermal synthesis method for granulation, which was conducive to exerting the phosphate adsorption capacity and facilitating practical application. The materials were characterized by SEM, EDX, XRD, BET, FTIR, and Zeta. In addition, the adsorption performance of La-MOFs/Al2O3 was evaluated through adsorption kinetics and isotherms, showing that the Langmuir adsorption capacity was 16.34 mgP·g-1 (25 °C) and increased with the water temperature. Moreover, the batch influence experiments of intimal pH, adsorbent dosage, coexisting ions, and stability tests were performed to analyze the potential for practical applications and verified through the natural micro-polluted water samples from Houxi River and Bailu Lake (China). The results indicated that the La-MOFs/Al2O3 was suited to a wide pH range of 4 to 10 and the phosphate removal efficiency remained above 70% after continuous use for four times, exhibiting excellent stability. It also had excellent selectivity in the presence of SO42-, Cl-, NO3-, and HCO3-, only decreased to 70.24% at high HCO3- ion concentration of 60 mg/L, respectively. And the La-MOFs/Al2O3 had excellent adsorption of total phosphorus, phosphate, and organic phosphorus in the actual river and lake water and completely removed dissolved phosphorus. Finally, a phosphate adsorption mechanism model involved in electrostatic interaction and ligand exchange was proposed. Therefore, La-MOFs/Al2O3 could be considered to be an excellent phosphorus adsorbent for application in the actual water environmental remediation.
Assuntos
Fosfatos , Poluentes Químicos da Água , Água/química , Lantânio/química , Fósforo , Íons , Adsorção , Cinética , Concentração de Íons de HidrogênioRESUMO
Metal-organic frameworks (MOFs) are emerging as advanced nanoporous materials to remove phenylarsenic acid, p-arsanilic acid (p-ASA), and roxarsone (ROX) in the aqueous solution, while MOFs are often present as powder state and encounter difficulties in recovery after adsorption, which greatly limit their practical application in the aqueous environments. Herein, MIL-101 (Fe), a typical MOF, was mixed with sodium alginate and gelatin to prepare MIL-101@CAGE by three-dimensional (3D) printing technology, which was then used as a separatable adsorbent to remove phenylarsenic acid in the aqueous solution. The structure of 3D-printed MIL-101@CAGE was first characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetry and differential thermogravimetry (TG-DTG). The octahedral morphology of MIL-101 (Fe) was found unchanged during the 3D printing process. Then, the adsorption process of MIL-101@CAGE on phenylarsenic acids was systematically investigated by adsorption kinetics, adsorption isotherms, adsorption thermodynamics, condition experiments, and cyclic regeneration experiments. Finally, the adsorption mechanism between MIL-101@CAGE and phenylarsenic acid was further investigated. The results showed that the Langmuir, Freundlich, and Temkin isotherms were well fit, and according to the Langmuir fitting results, the maximum adsorption amounts of MIL-101@CAGE on p-ASA and ROX at 25 °C were 106.98 and 120.28 mg/g, respectively. The removal of p-ASA and ROX by MIL-101@CAGE remained stable over a wide pH range and in the presence of various coexisting ions. The regeneration experiments showed that the 3D-printed MIL-101@CAGE could still maintain a more than 90% removal rate after five cycles. The adsorption mechanism of this system might include π-π stacking interactions between the benzene ring on the phenylarsenic acids and the organic ligands in MIL-101@CAGE, hydrogen-bonding, and ligand-bonding interactions (Fe-O-As). This study provides a new idea for the scale preparation of a separatable and recyclable adsorbent based on MOF material for the efficient removal of phenylarsenic acid in the aqueous solution.
RESUMO
Arsenic (As) is a highly toxic heavy metal and has been widely concerned for its hazardous environmental impact. Aromatic organic arsenic (AOCs) has been frequently used as an animal supplement to enhance feed utilization and prevent dysentery. The majority of organic arsenic could be discharged from the body and evolve as highly toxic inorganic arsenic that is hazardous to the environment and human health via biological conversion, photodegradation, and photo-oxidation. Current environmental issues necessitate the development and application of multifunctional porous materials in environmental remediation. Compared to the conventional adsorbent, such as activated carbon and zeolite, metal-organic frameworks (MOFs) exhibit a number of advantages, including simple synthesis, wide variety, simple modulation of pore size, large specific surface area, excellent chemical stability, and easy modification. In recent years, numerous scientists have investigated MOFs related materials involved with organic arsenic. These studies can be divided into three categories: detection of organic arsenic by MOFs, adsorption to remove organic arsenic by MOFs, and catalytic removal of organic arsenic by MOFs. Here, we conduct a critical analysis of current research findings and knowledge pertaining to the structural characteristics, application methods, removal properties, interaction mechanisms, and spectral analysis of MOFs. We summarized the application of MOFs in organic arsenic detection, adsorption, and catalytic degradation. Other arsenic removal technologies and conventional substances are also being investigated. This review will provide relevant scientific researchers with references.
Assuntos
Intoxicação por Arsênico , Arsênio , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Intoxicação por Metais Pesados , AdsorçãoRESUMO
Solar-driven interfacial evaporation technology is regarded as an attracting sustainable strategy for obtaining portable water from seawater and wastewater, and the recycle of waste materials to fabricate efficient photothermal materials as evaporator to efficiently utilize solar energy is very critical, but still difficult. To this purpose, graphite recovered from spent lithium-ion batteries (SLIBs) was realized using a simple acid leaching method, and a reconstructed graphite-based porous hydrogel (RG-PH) was subsequently fabricated by crosslinking foaming method. The incorporation of reconstructed graphite (RG) improves the mechanical characteristics of hydrogels and the light absorption performance significantly. The evaporation rate of optimized RG-PH can constantly reach 3.4278â kg m-2 h-1 for desalination under a one solar irradiation, and it also showed the excellent salt resistance in various salty water. Moreover, RG-PH has a strong elimination of a variety of organic contaminants in wastewater, including the typical volatile organic compound of phenol. This research shows the potential application of flexible and durable solar evaporators made from waste materials in purifying seawater and wastewater, not only contributing to carbon neutrality by recycling graphite from SLIBs, but also ensuring the cost-effectiveness harvest of solar energy for constantly obtaining clean water.
RESUMO
Invited for this month's cover, the researchers from Huaqiao University and Jilin Jianzhu University. The Cover image shows the use of spent graphite to prepare hydrogels for photothermal evaporation to produce clean water. The Research Article itself is available at 10.1002/cssc.202300845.
RESUMO
Solar steam generation technology (SSGT) using unlimited solar energy is regarded as one of the most promising sustainable technologies to produce clean water. However, most of studies on SSGT simply focus on how to improve salt resistance as well as exclude inorganic and organic pollutants in targeted water, and only very limited studies pay attention to the micro-organisms in the collected water. Herein, one porous Cu2 ZnSnS4 -based photothermal hydrogel (CZTS-PH) with antibacterial properties as well as good salt resistance was successfully prepared. The CZTS-PH was measured with the water evaporation rate as high as 3.249â kg m-2 h-1 and photothermal conversion efficiency of 96.3 % under one sun irradiation. Impressively, owing to the amino groups in the skeleton, CZTS-PH can significantly deteriorate the cell membrane and lead to the death of the Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which ensures its long-term stability photothermal conversion and the safety of clean water. Overall, the admired photothermal conversion efficiency, and the excellent salt resistance and antibacterial performance suggest that CZTS-PH could be a promising full-scale device applied in seawater desalination and water purification.
Assuntos
Hidrogéis , Esgotos , Destilação , Escherichia coli , Staphylococcus aureus , Cloreto de Sódio , Água do Mar , Água , Antibacterianos/farmacologiaRESUMO
We unprecedentedly report spatially separated CoNx nanodots on carbon nanotubes (CNTs) via a facile formamide condensation reaction. To our knowledge, CoNx-CNTs outperform the activities of current catalysts in peroxymonosulfate activation. CoNx-CNT-oriented radical-free degradation of contaminants shows robust anti-interference capacity toward environmental conditions. Our work will stimulate general interest in designing cost-effective and versatile quantum-/atom-sized catalysts with fully exposed active sites for water purification and beyond.
RESUMO
Waterborne virus contamination might easily adsorb on the organic or inorganic surface in the complex aquatic environment. A quartz crystal microbalance coupled with dissipation monitoring was used to investigate the effects of the ionic strength of monovalent cation and divalent cation and pH on the deposition kinetics of bacteriophage MS2 on silica surface coated with Microcystis aeruginosa or kaolin, which represents organic or inorganic particle, respectively. Derjaguin-Landau-Verwey-Overbeek theory was used to illustrate the deposition mechanisms of MS2. The increased concentration of Na+ significantly enhanced the deposition rates of MS2 on both coated silica surfaces due to the reduction of repulsive electrostatic interactions. However, the MS2 deposition rates decreased at higher ionic strength of Ca2+, which accounted for the steric and hydrophobic interactions. And the higher MS2 deposition rates on both surfaces occurred at pH 3. In addition, the deposition rates of MS2 on kaolin-coated silica surfaces were higher than on the Microcystis-coated surface under all studied conditions. Furthermore, the Derjaguin-Landau-Verwey-Overbeek theory could elucidate the deposition mechanism in Na+ solution, whereas the steric and hydrophobic interactions should be considered for the presence of high concentration of Ca2+.