Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(25): 11185-11192, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869092

RESUMO

Electrocatalytic hydrogen atom-hydroxyl radical (H*-·OH) redox system is a promising approach for contaminant removal and mineralization. However, its working mechanism, especially the effect of H*, remains unclear, hindering its practical application. Herein, we constructed an electrochemical reactor equipped with our self-made Pd-loaded Ti/TiO2 nanotube cathode and a commercial boron-doped diamond anode. After fulfilling the electrode characterization and free radical detection, we employed coumarin and 7-azido-4-methylcoumarin as probes to confirm the participation of H* in the transformation of organic compounds. A comprehensive study on the degradation kinetics, reaction, and mineralization mechanisms using benzoic acid (BA) and 4-chlorophenol (4-CP) as model compounds was further conducted. The rate constants and total organic carbon removal of BA and 4-CP in the redox system increased compared with those of the individual oxidation and reduction processes. Theoretical calculations demonstrate that H* opens up alternative pathways for BA and 4-CP ring cleavage, forming quinones as reactive intermediates. Furthermore, H* facilitates the mineralization of the typical intermediates, maleic acid and fumaric acid, through C=C bond addition and H-abstraction from the 1,1-diol structure. The presence of H* provides alternative pathways for pollutant transformation, consequently reducing the treatment duration.


Assuntos
Hidrogênio , Oxirredução , Hidrogênio/química , Cinética
2.
J Environ Manage ; 366: 121652, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971069

RESUMO

Regions can meet their development demands through trade, with the attendant environmental costs being shifted to other regions, and carbon emissions emitted from different industries could be transferred over long distances through the increasingly diversified trade network. However, it remains unclear how regional trade leads to the tele-connection and transfer of embodied carbon emissions form industries, and what is the structure and characteristics of the transfer. Thus, multiregional input‒output models and complex network analysis are employed to reveal the tele-connection of carbon emissions from industries in China. The results show that embodied carbon emissions from trade increased by 869.47 million tons during in five years, with North China being the largest outflow area, while the coastal regions being the inflow areas. Moreover, the secondary industry is the highest source of embodied carbon emissions, accounting for 96.68 % of the volume, and the transfer of carbon emissions mainly occurs in North and East China. In carbon emissions networks, North China holds a controlling position, as analysed by degree and strength. The first 23.3%-30% of nodes carry about 62.6%-72.4% of the entire carbon emissions flow, and the network conforms to scale-free features. Centrality further reveals that northern and coastal areas occupy core positions, with interregional carbon flows dominating the critical pathways in the network. The number of clusters evolved from three to four communities during 2012-2017 in the network, demonstrating that the carbon flow network is developing towards multipolarity and modularity. This study underscores the urgency of mitigating carbon emissions in industrial trade by identifying key nodes and cluster structures in emission networks.


Assuntos
Carbono , Indústrias , China , Comércio , Monitoramento Ambiental
3.
J Environ Manage ; 358: 120746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593734

RESUMO

The occurrence and removal of 38 antibiotics from nine classes in two drinking water treatment plants (WTPs) were monitored monthly over one year to evaluate the efficiency of typical treatment processes, track the source of antibiotics in tap water and assess their potential risks to ecosystem and human health. In both source waters, 18 antibiotics were detected at least once, with average total antibiotic concentrations of 538.5 ng/L in WTP1 and 569.3 ng/L in WTP2. The coagulation/flocculation and sedimentation, sand filtration and granular activated carbon processes demonstrated limited removal efficiencies. Chlorination, on the other hand, effectively eliminated antibiotics by 48.7 ± 11.9%. Interestingly, negative removal was observed along the distribution system, resulting in a significant antibiotic presence in tap water, with average concentrations of 131.5 ng/L in WTP1 and 362.8 ng/L in WTP2. Source tracking analysis indicates that most antibiotics in tap water may originate from distribution system. The presence of antibiotics in raw water and tap water posed risks to the aquatic ecosystem. Untreated or partially treated raw water could pose a medium risk to infants under six months. Water parameters, for example, temperature, total nitrogen and total organic carbon, can serve as indicators to estimate antibiotic occurrence and associated risks. Furthermore, machine learning models were developed that successfully predicted risk levels using water quality parameters. Our study provides valuable insights into the occurrence, removal and risk of antibiotics in urban WTPs, contributing to the broader understanding of antibiotic pollution in water treatment systems.


Assuntos
Antibacterianos , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Purificação da Água/métodos , Antibacterianos/análise , Poluentes Químicos da Água/análise , Medição de Risco , Humanos
4.
J Hazard Mater ; 473: 134613, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788571

RESUMO

Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.


Assuntos
Bactérias , Água Potável , Microbiologia da Água , Purificação da Água , Água Potável/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Purificação da Água/métodos , Halogenação , Filtração , Biodiversidade , Abastecimento de Água
5.
Head Neck ; 46(5): 1189-1200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366691

RESUMO

BACKGROUND: The effect of radiotherapy waiting time after last induction chemotherapy (IC-RT) on prognosis of patients with locally advanced nasopharyngeal carcinoma (LANPC) needs further discussion. METHODS: Three hundred and six patients with LANPC diagnosed pathologically by induction chemotherapy (IC) and radiotherapy (RT) from 2013 to 2018 were selected for this study. RESULTS: The IC-RT was a risk factor for the post-treatment progression of LANPC (OR = 1.017 95%CI: 1.003-1.031), For patients with LANPC, the IC-RT > 40 days significantly reduced 5-year PFS (70% vs. 55%; p = 0.0012), 5-year OS (84% vs. 73%; p = 0.028), 5-year DMFS (80% vs. 66%; p = 0.003), 5-year LRFS (77% vs. 67%; p = 0.012). Indicating that patients with stage IVa who IC-RT > 40 days were found to be a significant predictor of aggravated PFS (HR = 2.69; 95%CI: 1.57-4.6), OS (HR = 2.55; 95%CI: 1.29-5.03), DMFS (HR = 3.07; 95%CI: 1.64-5.76) and LRFS (HR = 2.26; 95%CI: 1.21-4.21). CONCLUSION: The prognosis of patients will be adversely affected if the IC-RT exceeds 40 days, especially for stage IVa patients.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Quimioterapia de Indução , Listas de Espera , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Quimiorradioterapia/efeitos adversos , Carcinoma/tratamento farmacológico , Prognóstico , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
6.
Nat Nanotechnol ; 19(8): 1130-1140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724611

RESUMO

Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa