Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38555479

RESUMO

MOTIVATION: Accurately predicting molecular metabolic stability is of great significance to drug research and development, ensuring drug safety and effectiveness. Existing deep learning methods, especially graph neural networks, can reveal the molecular structure of drugs and thus efficiently predict the metabolic stability of molecules. However, most of these methods focus on the message passing between adjacent atoms in the molecular graph, ignoring the relationship between bonds. This makes it difficult for these methods to estimate accurate molecular representations, thereby being limited in molecular metabolic stability prediction tasks. RESULTS: We propose the MS-BACL model based on bond graph augmentation technology and contrastive learning strategy, which can efficiently and reliably predict the metabolic stability of molecules. To our knowledge, this is the first time that bond-to-bond relationships in molecular graph structures have been considered in the task of metabolic stability prediction. We build a bond graph based on 'atom-bond-atom', and the model can simultaneously capture the information of atoms and bonds during the message propagation process. This enhances the model's ability to reveal the internal structure of the molecule, thereby improving the structural representation of the molecule. Furthermore, we perform contrastive learning training based on the molecular graph and its bond graph to learn the final molecular representation. Multiple sets of experimental results on public datasets show that the proposed MS-BACL model outperforms the state-of-the-art model. AVAILABILITY AND IMPLEMENTATION: The code and data are publicly available at https://github.com/taowang11/MS.


Assuntos
Redes Neurais de Computação
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446739

RESUMO

Antimicrobial peptides (AMPs), short peptides with diverse functions, effectively target and combat various organisms. The widespread misuse of chemical antibiotics has led to increasing microbial resistance. Due to their low drug resistance and toxicity, AMPs are considered promising substitutes for traditional antibiotics. While existing deep learning technology enhances AMP generation, it also presents certain challenges. Firstly, AMP generation overlooks the complex interdependencies among amino acids. Secondly, current models fail to integrate crucial tasks like screening, attribute prediction and iterative optimization. Consequently, we develop a integrated deep learning framework, Diff-AMP, that automates AMP generation, identification, attribute prediction and iterative optimization. We innovatively integrate kinetic diffusion and attention mechanisms into the reinforcement learning framework for efficient AMP generation. Additionally, our prediction module incorporates pre-training and transfer learning strategies for precise AMP identification and screening. We employ a convolutional neural network for multi-attribute prediction and a reinforcement learning-based iterative optimization strategy to produce diverse AMPs. This framework automates molecule generation, screening, attribute prediction and optimization, thereby advancing AMP research. We have also deployed Diff-AMP on a web server, with code, data and server details available in the Data Availability section.


Assuntos
Aminoácidos , Peptídeos Antimicrobianos , Antibacterianos , Difusão , Cinética
3.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171927

RESUMO

Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.


Assuntos
Algoritmos , Inteligência Artificial , Redes Neurais de Computação
4.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37427977

RESUMO

Studies have shown that the mechanism of action of many drugs is related to miRNA. In-depth research on the relationship between miRNA and drugs can provide theoretical foundations and practical approaches for various areas, such as drug target discovery, drug repositioning and biomarker research. Traditional biological experiments to test miRNA-drug susceptibility are costly and time-consuming. Thus, sequence- or topology-based deep learning methods are recognized in this field for their efficiency and accuracy. However, these methods have limitations in dealing with sparse topologies and higher-order information of miRNA (drug) feature. In this work, we propose GCFMCL, a model for multi-view contrastive learning based on graph collaborative filtering. To the best of our knowledge, this is the first attempt that incorporates contrastive learning strategy into the graph collaborative filtering framework to predict the sensitivity relationships between miRNA and drug. The proposed multi-view contrastive learning method is divided into topological contrastive objective and feature contrastive objective: (1) For the homogeneous neighbors of the topological graph, we propose a novel topological contrastive learning method via constructing the contrastive target through the topological neighborhood information of nodes. (2) The proposed model obtains feature contrastive targets from high-order feature information according to the correlation of node features, and mines potential neighborhood relationships in the feature space. The proposed multi-view comparative learning effectively alleviates the impact of heterogeneous node noise and graph data sparsity in graph collaborative filtering, and significantly enhances the performance of the model. Our study employs a dataset derived from the NoncoRNA and ncDR databases, encompassing 2049 experimentally validated miRNA-drug sensitivity associations. Five-fold cross-validation shows that the Area Under the Curve (AUC), Area Under the Precision-Recall Curve (AUPR) and F1-score (F1) of GCFMCL reach 95.28%, 95.66% and 89.77%, which outperforms the state-of-the-art (SOTA) method by the margin of 2.73%, 3.42% and 4.96%, respectively. Our code and data can be accessed at https://github.com/kkkayle/GCFMCL.


Assuntos
Sistemas de Liberação de Medicamentos , MicroRNAs , Área Sob a Curva , Bases de Dados Factuais , Descoberta de Drogas , MicroRNAs/genética
5.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37328701

RESUMO

Circular RNA (circRNA) is closely associated with human diseases. Accordingly, identifying the associations between human diseases and circRNA can help in disease prevention, diagnosis and treatment. Traditional methods are time consuming and laborious. Meanwhile, computational models can effectively predict potential circRNA-disease associations (CDAs), but are restricted by limited data, resulting in data with high dimension and imbalance. In this study, we propose a model based on automatically selected meta-path and contrastive learning, called the MPCLCDA model. First, the model constructs a new heterogeneous network based on circRNA similarity, disease similarity and known association, via automatically selected meta-path and obtains the low-dimensional fusion features of nodes via graph convolutional networks. Then, contrastive learning is used to optimize the fusion features further, and obtain the node features that make the distinction between positive and negative samples more evident. Finally, circRNA-disease scores are predicted through a multilayer perceptron. The proposed method is compared with advanced methods on four datasets. The average area under the receiver operating characteristic curve, area under the precision-recall curve and F1 score under 5-fold cross-validation reached 0.9752, 0.9831 and 0.9745, respectively. Simultaneously, case studies on human diseases further prove the predictive ability and application value of this method.


Assuntos
Redes Neurais de Computação , RNA Circular , Humanos , RNA Circular/genética , Curva ROC , Biologia Computacional/métodos , Algoritmos
6.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078865

RESUMO

The elucidation of gene regulatory networks (GRNs) is one of the central challenges of systems biology, which is crucial for understanding pathogenesis and curing diseases. Various computational methods have been developed for GRN inference, but identifying redundant regulation remains a fundamental problem. Although considering topological properties and edge importance measures simultaneously can identify and reduce redundant regulations, how to address their respective weaknesses whilst leveraging their strengths is a critical problem faced by researchers. Here, we propose a network structure refinement method for GRN (NSRGRN) that effectively combines the topological properties and edge importance measures during GRN inference. NSRGRN has two major parts. The first part constructs a preliminary ranking list of gene regulations to avoid starting the GRN inference from a directed complete graph. The second part develops a novel network structure refinement (NSR) algorithm to refine the network structure from local and global topology perspectives. Specifically, the Conditional Mutual Information with Directionality and network motifs are applied to optimise the local topology, and the lower and upper networks are used to balance the bilateral relationship between the local topology's optimisation and the global topology's maintenance. NSRGRN is compared with six state-of-the-art methods on three datasets (26 networks in total), and it shows the best all-round performance. Furthermore, when acting as a post-processing step, the NSR algorithm can improve the results of other methods in most datasets.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Biologia de Sistemas , Algoritmos , Biologia Computacional/métodos
7.
Bioinformatics ; 40(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648052

RESUMO

MOTIVATION: Accurate inference of potential drug-protein interactions (DPIs) aids in understanding drug mechanisms and developing novel treatments. Existing deep learning models, however, struggle with accurate node representation in DPI prediction, limiting their performance. RESULTS: We propose a new computational framework that integrates global and local features of nodes in the drug-protein bipartite graph for efficient DPI inference. Initially, we employ pre-trained models to acquire fundamental knowledge of drugs and proteins and to determine their initial features. Subsequently, the MinHash and HyperLogLog algorithms are utilized to estimate the similarity and set cardinality between drug and protein subgraphs, serving as their local features. Then, an energy-constrained diffusion mechanism is integrated into the transformer architecture, capturing interdependencies between nodes in the drug-protein bipartite graph and extracting their global features. Finally, we fuse the local and global features of nodes and employ multilayer perceptrons to predict the likelihood of potential DPIs. A comprehensive and precise node representation guarantees efficient prediction of unknown DPIs by the model. Various experiments validate the accuracy and reliability of our model, with molecular docking results revealing its capability to identify potential DPIs not present in existing databases. This approach is expected to offer valuable insights for furthering drug repurposing and personalized medicine research. AVAILABILITY AND IMPLEMENTATION: Our code and data are accessible at: https://github.com/ZZCrazy00/DPI.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular , Proteínas , Proteínas/química , Proteínas/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Biologia Computacional/métodos , Aprendizado Profundo
8.
Bioinformatics ; 40(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967119

RESUMO

MOTIVATION: Accurate prediction of acute dermal toxicity (ADT) is essential for the safe and effective development of contact drugs. Currently, graph neural networks, a form of deep learning technology, accurately model the structure of compound molecules, enhancing predictions of their ADT. However, many existing methods emphasize atom-level information transfer and overlook crucial data conveyed by molecular bonds and their interrelationships. Additionally, these methods often generate "equal" node representations across the entire graph, failing to accentuate "important" substructures like functional groups, pharmacophores, and toxicophores, thereby reducing interpretability. RESULTS: We introduce a novel model, GraphADT, utilizing structure remapping and multi-view graph pooling (MVPool) technologies to accurately predict compound ADT. Initially, our model applies structure remapping to better delineate bonds, transforming "bonds" into new nodes and "bond-atom-bond" interactions into new edges, thereby reconstructing the compound molecular graph. Subsequently, we use MVPool to amalgamate data from various perspectives, minimizing biases inherent to single-view analyses. Following this, the model generates a robust node ranking collaboratively, emphasizing critical nodes or substructures to enhance model interpretability. Lastly, we apply a graph comparison learning strategy to train both the original and structure remapped molecular graphs, deriving the final molecular representation. Experimental results on public datasets indicate that the GraphADT model outperforms existing state-of-the-art models. The GraphADT model has been demonstrated to effectively predict compound ADT, offering potential guidance for the development of contact drugs and related treatments. AVAILABILITY AND IMPLEMENTATION: Our code and data are accessible at: https://github.com/mxqmxqmxq/GraphADT.git.


Assuntos
Pele , Pele/efeitos dos fármacos , Humanos , Aprendizado Profundo , Redes Neurais de Computação
9.
PLoS Comput Biol ; 20(8): e1012400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213450

RESUMO

The identification of cancer driver genes (CDGs) poses challenges due to the intricate interdependencies among genes and the influence of measurement errors and noise. We propose a novel energy-constrained diffusion (ECD)-based model for identifying CDGs, termed ECD-CDGI. This model is the first to design an ECD-Attention encoder by combining the ECD technique with an attention mechanism. ECD-Attention encoder excels at generating robust gene representations that reveal the complex interdependencies among genes while reducing the impact of data noise. We concatenate topological embedding extracted from gene-gene networks through graph transformers to these gene representations. We conduct extensive experiments across three testing scenarios. Extensive experiments show that the ECD-CDGI model possesses the ability to not only be proficient in identifying known CDGs but also efficiently uncover unknown potential CDGs. Furthermore, compared to the GNN-based approach, the ECD-CDGI model exhibits fewer constraints by existing gene-gene networks, thereby enhancing its capability to identify CDGs. Additionally, ECD-CDGI is open-source and freely available. We have also launched the model as a complimentary online tool specifically crafted to expedite research efforts focused on CDGs identification.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Neoplasias , Humanos , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Neoplasias/genética , Modelos Genéticos , Algoritmos , Oncogenes/genética , Genes Neoplásicos/genética , Bases de Dados Genéticas
10.
Methods ; 221: 73-81, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123109

RESUMO

Research indicates that miRNAs present in herbal medicines are crucial for identifying disease markers, advancing gene therapy, facilitating drug delivery, and so on. These miRNAs maintain stability in the extracellular environment, making them viable tools for disease diagnosis. They can withstand the digestive processes in the gastrointestinal tract, positioning them as potential carriers for specific oral drug delivery. By engineering plants to generate effective, non-toxic miRNA interference sequences, it's possible to broaden their applicability, including the treatment of diseases such as hepatitis C. Consequently, delving into the miRNA-disease associations (MDAs) within herbal medicines holds immense promise for diagnosing and addressing miRNA-related diseases. In our research, we propose the SGAE-MDA model, which harnesses the strengths of a graph autoencoder (GAE) combined with a semi-supervised approach to uncover potential MDAs in herbal medicines more effectively. Leveraging the GAE framework, the SGAE-MDA model exactly integrates the inherent feature vectors of miRNAs and disease nodes with the regulatory data in the miRNA-disease network. Additionally, the proposed semi-supervised learning approach randomly hides the partial structure of the miRNA-disease network, subsequently reconstructing them within the GAE framework. This technique effectively minimizes network noise interference. Through comparison against other leading deep learning models, the results consistently highlighted the superior performance of the proposed SGAE-MDA model. Our code and dataset can be available at: https://github.com/22n9n23/SGAE-MDA.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina Supervisionado , Extratos Vegetais
11.
Methods ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293728

RESUMO

Arabidopsis thaliana synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.

12.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35554485

RESUMO

Accurate inference of gene regulatory networks (GRNs) is an essential premise for understanding pathogenesis and curing diseases. Various computational methods have been developed for GRN inference, but the identification of redundant regulation remains a challenge faced by researchers. Although combining global and local topology can identify and reduce redundant regulations, the topologies' specific forms and cooperation modes are unclear and real regulations may be sacrificed. Here, we propose a network structure control method [network-structure-controlling-based GRN inference method (NSCGRN)] that stipulates the global and local topology's specific forms and cooperation mode. The method is carried out in a cooperative mode of 'global topology dominates and local topology refines'. Global topology requires layering and sparseness of the network, and local topology requires consistency of the subgraph association pattern with the network motifs (fan-in, fan-out, cascade and feedforward loop). Specifically, an ordered gene list is obtained by network topology centrality sorting. A Bernaola-Galvan mutation detection algorithm applied to the list gives the hierarchy of GRNs to control the upstream and downstream regulations within the global scope. Finally, four network motifs are integrated into the hierarchy to optimize local complex regulations and form a cooperative mode where global and local topologies play the dominant and refined roles, respectively. NSCGRN is compared with state-of-the-art methods on three different datasets (six networks in total), and it achieves the highest F1 and Matthews correlation coefficient. Experimental results show its unique advantages in GRN inference.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Algoritmos , Biologia Computacional/métodos
13.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35534179

RESUMO

Circular RNAs (circRNAs) are a class of structurally stable endogenous noncoding RNA molecules. Increasing studies indicate that circRNAs play vital roles in human diseases. However, validating disease-related circRNAs in vivo is costly and time-consuming. A reliable and effective computational method to identify circRNA-disease associations deserves further studies. In this study, we propose a computational method called RNMFLP that combines robust nonnegative matrix factorization (RNMF) and label propagation algorithm (LP) to predict circRNA-disease associations. First, to reduce the impact of false negative data, the original circRNA-disease adjacency matrix is updated by matrix multiplication using the integrated circRNA similarity and the disease similarity information. Subsequently, the RNMF algorithm is used to obtain the restricted latent space to capture potential circRNA-disease pairs from the association matrix. Finally, the LP algorithm is utilized to predict more accurate circRNA-disease associations from the integrated circRNA similarity network and integrated disease similarity network, respectively. Fivefold cross-validation of four datasets shows that RNMFLP is superior to the state-of-the-art methods. In addition, case studies on lung cancer, hepatocellular carcinoma and colorectal cancer further demonstrate the reliability of our method to discover disease-related circRNAs.


Assuntos
Biologia Computacional , RNA Circular , Algoritmos , Biologia Computacional/métodos , Humanos , Reprodutibilidade dos Testes
14.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36377749

RESUMO

MicroRNAs (miRNAs) are closely related to a variety of human diseases, not only regulating gene expression, but also having an important role in human life activities and being viable targets of small molecule drugs for disease treatment. Current computational techniques to predict the potential associations between small molecule and miRNA are not that accurate. Here, we proposed a new computational method based on a deep autoencoder and a scalable tree boosting model (DAESTB), to predict associations between small molecule and miRNA. First, we constructed a high-dimensional feature matrix by integrating small molecule-small molecule similarity, miRNA-miRNA similarity and known small molecule-miRNA associations. Second, we reduced feature dimensionality on the integrated matrix using a deep autoencoder to obtain the potential feature representation of each small molecule-miRNA pair. Finally, a scalable tree boosting model is used to predict small molecule and miRNA potential associations. The experiments on two datasets demonstrated the superiority of DAESTB over various state-of-the-art methods. DAESTB achieved the best AUC value. Furthermore, in three case studies, a large number of predicted associations by DAESTB are confirmed with the public accessed literature. We envision that DAESTB could serve as a useful biological model for predicting potential small molecule-miRNA associations.


Assuntos
MicroRNAs , Humanos , Algoritmos , Biologia Computacional/métodos , Predisposição Genética para Doença , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos
15.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36063562

RESUMO

Noncoding RNAs (ncRNAs) have recently attracted considerable attention due to their key roles in biology. The ncRNA-proteins interaction (NPI) is often explored to reveal some biological activities that ncRNA may affect, such as biological traits, diseases, etc. Traditional experimental methods can accomplish this work but are often labor-intensive and expensive. Machine learning and deep learning methods have achieved great success by exploiting sufficient sequence or structure information. Graph Neural Network (GNN)-based methods consider the topology in ncRNA-protein graphs and perform well on tasks like NPI prediction. Based on GNN, some pairwise constraint methods have been developed to apply on homogeneous networks, but not used for NPI prediction on heterogeneous networks. In this paper, we construct a pairwise constrained NPI predictor based on dual Graph Convolutional Network (GCN) called NPI-DGCN. To our knowledge, our method is the first to train a heterogeneous graph-based model using a pairwise learning strategy. Instead of binary classification, we use a rank layer to calculate the score of an ncRNA-protein pair. Moreover, our model is the first to predict NPIs on the ncRNA-protein bipartite graph rather than the homogeneous graph. We transform the original ncRNA-protein bipartite graph into two homogenous graphs on which to explore second-order implicit relationships. At the same time, we model direct interactions between two homogenous graphs to explore explicit relationships. Experimental results on the four standard datasets indicate that our method achieves competitive performance with other state-of-the-art methods. And the model is available at https://github.com/zhuoninnin1992/NPIPredict.


Assuntos
Redes Neurais de Computação , RNA não Traduzido , Aprendizado de Máquina , Proteínas/química , RNA não Traduzido/genética
16.
J Chem Inf Model ; 64(7): 2798-2806, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643082

RESUMO

Plant small secretory peptides (SSPs) play an important role in the regulation of biological processes in plants. Accurately predicting SSPs enables efficient exploration of their functions. Traditional experimental verification methods are very reliable and accurate, but they require expensive equipment and a lot of time. The method of machine learning speeds up the prediction process of SSPs, but the instability of feature extraction will also lead to further limitations of this type of method. Therefore, this paper proposes a new feature-correction-based model for SSP recognition in plants, abbreviated as SE-SSP. The model mainly includes the following three advantages: First, the use of transformer encoders can better reveal implicit features. Second, design a feature correction module suitable for sequences, named 2-D SENET, to adaptively adjust the features to obtain a more robust feature representation. Third, stack multiple linear modules to further dig out the deep information on the sample. At the same time, the training based on a contrastive learning strategy can alleviate the problem of sparse samples. We construct experiments on publicly available data sets, and the results verify that our model shows an excellent performance. The proposed model can be used as a convenient and effective SSP prediction tool in the future. Our data and code are publicly available at https://github.com/wrab12/SE-SSP/.


Assuntos
Fontes de Energia Elétrica , Aprendizado de Máquina , Transporte Biológico , Peptídeos , Projetos de Pesquisa
17.
J Chem Inf Model ; 64(7): 2912-2920, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37920888

RESUMO

Deep learning methods can accurately study noncoding RNA protein interactions (NPI), which is of great significance in gene regulation, human disease, and other fields. However, the computational method for predicting NPI in large-scale dynamic ncRNA protein bipartite graphs is rarely discussed, which is an online modeling and prediction problem. In addition, the results published by researchers on the Web site cannot meet real-time needs due to the large amount of basic data and long update cycles. Therefore, we propose a real-time method based on the dynamic ncRNA-protein bipartite graph learning framework, termed ML-GNN, which can model and predict the NPIs in real time. Our proposed method has the following advantages: first, the meta-learning strategy can alleviate the problem of large prediction errors in sparse neighborhood samples; second, dynamic modeling of newly added data can reduce computational pressure and predict NPIs in real-time. In the experiment, we built a dynamic bipartite graph based on 300000 NPIs from the NPInterv4.0 database. The experimental results indicate that our model achieved excellent performance in multiple experiments. The code for the model is available at https://github.com/taowang11/ML-NPI, and the data can be downloaded freely at http://bigdata.ibp.ac.cn/npinter4.


Assuntos
RNA não Traduzido , Pesquisadores , Humanos , Bases de Dados Factuais , RNA não Traduzido/genética
18.
Methods ; 212: 1-9, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813017

RESUMO

MicroRNA(miRNA) is a class of short non-coding RNAs with a length of about 22 nucleotides, which participates in various biological processes of cells. A number of studies have shown that miRNAs are closely related to the occurrence of cancer and various human diseases. Therefore, studying miRNA-disease associations is helpful to understand the pathogenesis of diseases as well as the prevention, diagnosis, treatment and prognosis of diseases. Traditional biological experimental methods for studying miRNA-disease associations have disadvantages such as expensive equipment, time-consuming and labor-intensive. With the rapid development of bioinformatics, more and more researchers are committed to developing effective computational methods to predict miRNA-disease associations in roder to reduce the time and money cost of experiments. In this study, we proposed a neural network-based deep matrix factorization method named NNDMF to predict miRNA-disease associations. To address the problem that traditional matrix factorization methods can only extract linear features, NNDMF used neural network to perform deep matrix factorization to extract nonlinear features, which makes up for the shortcomings of traditional matrix factorization methods. We compared NNDMF with four previous classical prediction models (IMCMDA, GRMDA, SACMDA and ICFMDA) in global LOOCV and local LOOCV, respectively. The AUCs achieved by NNDMF in two cross-validation methods were 0.9340 and 0.8763, respectively. Furthermore, we conducted case studies on three important human diseases (lymphoma, colorectal cancer and lung cancer) to validate the effectiveness of NNDMF. In conclusion, NNDMF could effectively predict the potential miRNA-disease associations.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Predisposição Genética para Doença , Algoritmos , Redes Neurais de Computação , Biologia Computacional/métodos
19.
Molecules ; 29(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542866

RESUMO

The development of effective inhibitors targeting the Kirsten rat sarcoma viral proto-oncogene (KRASG12D) mutation, a prevalent oncogenic driver in cancer, represents a significant unmet need in precision medicine. In this study, an integrated computational approach combining structure-based virtual screening and molecular dynamics simulation was employed to identify novel noncovalent inhibitors targeting the KRASG12D variant. Through virtual screening of over 1.7 million diverse compounds, potential lead compounds with high binding affinity and specificity were identified using molecular docking and scoring techniques. Subsequently, 200 ns molecular dynamics simulations provided critical insights into the dynamic behavior, stability, and conformational changes of the inhibitor-KRASG12D complexes, facilitating the selection of lead compounds with robust binding profiles. Additionally, in silico absorption, distribution, metabolism, excretion (ADME) profiling, and toxicity predictions were applied to prioritize the lead compounds for further experimental validation. The discovered noncovalent KRASG12D inhibitors exhibit promises as potential candidates for targeted therapy against KRASG12D-driven cancers. This comprehensive computational framework not only expedites the discovery of novel KRASG12D inhibitors but also provides valuable insights for the development of precision treatments tailored to this oncogenic mutation.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Simulação de Acoplamento Molecular , Mutação
20.
BMC Genomics ; 24(1): 742, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053026

RESUMO

BACKGROUND: DNA methylation, instrumental in numerous life processes, underscores the paramount importance of its accurate prediction. Recent studies suggest that deep learning, due to its capacity to extract profound insights, provides a more precise DNA methylation prediction. However, issues related to the stability and generalization performance of these models persist. RESULTS: In this study, we introduce an efficient and stable DNA methylation prediction model. This model incorporates a feature fusion approach, adaptive feature correction technology, and a contrastive learning strategy. The proposed model presents several advantages. First, DNA sequences are encoded at four levels to comprehensively capture intricate information across multi-scale and low-span features. Second, we design a sequence-specific feature correction module that adaptively adjusts the weights of sequence features. This improvement enhances the model's stability and scalability, or its generality. Third, our contrastive learning strategy mitigates the instability issues resulting from sparse data. To validate our model, we conducted multiple sets of experiments on commonly used datasets, demonstrating the model's robustness and stability. Simultaneously, we amalgamate various datasets into a single, unified dataset. The experimental outcomes from this combined dataset substantiate the model's robust adaptability. CONCLUSIONS: Our research findings affirm that the StableDNAm model is a general, stable, and effective instrument for DNA methylation prediction. It holds substantial promise for providing invaluable assistance in future methylation-related research and analyses.


Assuntos
Metilação de DNA , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa