Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pharmacol Res ; 175: 105983, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822972

RESUMO

Angiogenesis plays an important role in the growth and metastasis of solid tumors including melanoma. Inhibiting tumor-associated angiogenesis is a tactic in treating melanoma. Dioscin restrains angiogenesis in colon tumor and has anti-melanoma effects in cell and animal models. In a previous study, we found that dioscin inhibits Src/STAT3 signaling in melanoma cells. Activation of the Src/STAT3 pathway has been shown to promote tumor angiogenesis. This study aimed to determine whether dioscin's anti-melanoma effects is related to inhibiting Src/STAT3 signaling-mediated angiogenesis. In a B16F10 allograft mouse model, we found that dioscin inhibited melanoma growth and angiogenesis. To exclude the impact of tumor growth on angiogenesis, a chicken chorioallantoic membrane (CAM) model was used to verify the anti-angiogenic effect of dioscin. Results showed that dioscin suppressed vessel formation in CAM. To determine if tumor secreted pro-angiogenic cytokines are involved in the anti-angiogenic effect of dioscin, conditioned media from dioscin-treated A375 melanoma cells were used to culture human umbilical vein endothelial cells (HUVECs), and tube formation was monitored. It was observed that the tube formation of HUVECs was inhibited. Mechanistic studies revealed that dioscin inhibited the activation of Src and STAT3, and lowered mRNA and protein levels of STAT3 transcriptionally-regulated genes, in B16F10 melanomas. ELISA assays showed that dioscin decreased the secretion of MMP-2, MMP-9 and VEGF from A375 cells. Over-activation of STAT3 lessened the effects of dioscin in decreasing the secretion of pro-angiogenic cytokines from melanoma cells, and in inhibiting tube formation of HUVECs cultured with conditioned media from melanoma cell cultures. In summary, we for the first time demonstrated that inhibiting Src/STAT3 signaling-mediated angiogenesis is involved in the anti-melanoma effects of dioscin. This study provides further pharmacological groundwork for developing dioscin as an anti-melanoma agent.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Diosgenina/análogos & derivados , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator de Transcrição STAT3/metabolismo , Carga Tumoral/efeitos dos fármacos , Quinases da Família src/metabolismo
2.
Biol Pharm Bull ; 43(8): 1267-1271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741948

RESUMO

Primary liver cancer is a lethal cancer. The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway has been implicated in the pathogenesis of liver cancer. Gomisin N (GN), a lignan isolated from the dried fruits of Schisandra chinensis (Turca.) Baill., has been reported to reduce viability of, and induce apoptosis in, HepG2 liver cancer cells. In preadipocytes, GN was found to inhibit Akt activity. In the present study, Akt signaling-related anti-liver cancer mechanisms of GN were investigated. We confirmed that GN reduces cell viability of, and triggers apoptosis in, more liver cancer cell lines. Mechanistic studies revealed that GN lowers protein levels of phospho-PI3K (p85 tyrosine (Tyr)458), phospho-Akt (serine (Ser)473), and Akt downstream molecules Mcl-1 in HepG2 and HCCLM3 cells. Meanwhile, GN activates mTOR and inhibits ULK1 (a negative downstream effector of mTOR) activities. Activation of mTOR has been reported to suppress ULK1 activity and repress autophagy. Indeed, we observed that GN inhibits autophagy in liver cancer cells. In summary, we for the first time demonstrated that GN inhibits the PI3K-Akt pathway and regulates the mTOR-ULK1 pathway in liver cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lignanas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinase/fisiologia , Compostos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
3.
Pharmacol Res ; 142: 115-126, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797070

RESUMO

A traditional Chinese medicine (TCM) formula (SL) comprising Sophorae Flos and Lonicerae Japonicae Flos was used for treating melanoma in ancient China. We have previously shown that an ethanolic extract of SL (SLE) possesses anti-melanoma effects and suppresses STAT3 signaling in vitro and in vivo. STAT3 has been linked to the development of melanoma immunosuppressive microenvironment. In this work, we investigated whether SLE inhibits melanoma growth by reprogramming the tumor microenvironment in mouse and co-culture cell models. In B16F10 melanoma-bearing mice, we found that intragastric administration of SLE (1.2 g/kg) dramatically inhibited tumor growth. This observation was associated with the downregulation of protein levels of phospho-STAT3 (Tyr 705) and STAT3-regulated immunosuppressive cytokines, and mRNA levels of STAT3-targeted genes involved in tumor growth and immune evasion. We also observed increased Th, Tc and dendritic cells in the melanomas and spleens in SLE-treated mice compared to that in control mice. In a co-culture system composed of B16F10 cells and mouse primary splenic lymphocytes, it was found that SLE not only inhibited STAT3 activation in B16F10 cells, but also downregulated mRNA levels of STAT3-targeted genes in the splenic lymphocytes. In this co-culture setting, SLE decreased the levels of STAT3-regulated immunosuppressive cytokines, increased the percentages of Th, Tc and dendritic cells as well. Furthermore, effects of SLE on STAT3 phosphorylation, cytokine levels and immune cell subtype percentages were significantly weaker in the B16STAT3C cells (stable cells harboring a constitutively active STAT3 variant STAT3C)/splenic lymphocytes co-culture system than in the B16V cells (cells stably transfected with the empty vector)/splenic lymphocytes co-culture system, indicating that STAT3 over-activation diminishes SLE's effects. In summary, our findings indicate that reprograming the immune microenvironment, partially mediated by inhibiting STAT3 signaling, contributes to the anti-melanoma mechanisms of SLE. This study provides further pharmacological groundwork for developing SLE as a modern agent for melanoma prevention/treatment, and supports the notion that reprograming immunosuppressive microenvironment is a viable anti-melanoma strategy.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/imunologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/imunologia , Neoplasias Cutâneas/imunologia , Sophora , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Técnicas de Cocultura , Flores , Lonicera , Linfócitos , Masculino , Medicina Tradicional Chinesa , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Microambiente Tumoral/imunologia
4.
Exp Dermatol ; 27(2): 201-204, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29078004

RESUMO

In this study, we aimed to investigate the anti-melanoma effects and the JAK2/STAT3 pathway-related mechanism of action of atractylenolide I in human melanoma cells. Our results showed that atractylenolide I effectively reduced viability, induced apoptosis and inhibited migration of melanoma cells. Meanwhile, atractylenolide I decreased the protein expression levels of phospho-JAK2 and phospho-STAT3, and in turn downregulated the mRNA levels of STAT3-targeted genes, including Bcl-xL, MMP-2 and MMP-9. Furthermore, the cytotoxic effect of atractylenolide I was attenuated in STAT3-overactivated A375 cells. These findings indicate that inhibition of JAK2/STAT3 signalling contributes to the anti-melanoma effects of atractylenolide I.


Assuntos
Apoptose , Janus Quinase 2/metabolismo , Lactonas/farmacologia , Melanoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
BMC Complement Altern Med ; 18(1): 141, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720145

RESUMO

BACKGROUND: Herba Siegesbeckiae (HS, Xixiancao in Chinese) is a commonly used traditional Chinese medicinal herb for soothing joints. In ancient materia medica books, HS is recorded to be the aerial part of Siegesbeckia pubescens Makino (SP) which is also the only origin of HS in the 1963 edition of the Chinese Pharmacopeia (ChP). The aerial parts of Siegesbeckia orientalis L. (SO) and Siegesbeckia glabrescens Makino (SG) have been included as two additional origins for HS in each edition of ChP since 1977. However, chemical and pharmacological comparisons among these three species have not been conducted. METHODS: An HPLC with diode array detector (HPLC-DAD) method combined with similarity analysis, hierarchical cluster analysis (HCA) and principal component analysis (PCA) was developed for comparing the fingerprint chromatograms of the three species. The inhibitory effects of the three species on NO production and IL-6 secretion in LPS-stimulated RAW264.7 macrophages were compared. RESULTS: Fingerprint chromatograms of the three species showed different profiles, but had 13 common peaks. Results from HCA and PCA of the common peaks demonstrated that all 14 herbal samples of the three species tended to be grouped and separated species dependently. The extents of inhibition on NO production and IL-6 secretion of the three species were different, with SG being the most and SP the least potent. CONCLUSIONS: Both chemical profiles and inflammatory mediator-inhibitory effects of the three species were different. These findings provide a chemical and pharmacological basis for determining whether the three species can all serve as the origins of HS.


Assuntos
Asteraceae/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Interleucina-6/análise , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Células RAW 264.7 , Reprodutibilidade dos Testes
6.
Molecules ; 23(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558163

RESUMO

Schisandra Fructus (SF) is a traditional Chinese herb used in the treatment of inflammatory disorders like hepatitis. One of the main anti-inflammatory components of SF is the lignans. However, the underlying anti-inflammatory mechanism of Schisandra Chinensis lignans (SCL) remains unclear. This study aims to investigate the effects of SCL on inflammatory mediators in lipopolysaccharide-stimulated RAW264.7 cells and explore the underlying mechanism. The production of nitric oxide (NO) was determined by Griess reaction. ELISA was used to determine cytokine levels and chemokines secretion. To estimate protein levels and enzyme activities, we employed Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was detected using immunofluorescence analyses. The results showed that SCL significantly reduced the release of inflammatory mediators, including NO and PGE2, which may be related to down-regulation of iNOS and COX-2 expression. The production of cytokines and chemokines was suppressed by SCL treatment. SCL also decreased the phosphorylation of IKKα/ß, IκB-α, Akt, TBK1, ERK, p38, JNK, NF-κB (p65), AP-1 (c-Jun), and IRF3 in RAW264.7 macrophages activated with LPS. The nuclear protein levels and nuclear translocation of AP-1, NF-κB and IRF3 were suppressed by SCL. These results indicated that SCL suppressed the IKKα/ß/NF-κB, MAPKs/AP-1 and TBK1/IRF3 signaling pathways in LPS-stimulated RAW264.7 macrophages.


Assuntos
Lignanas/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Schisandra/química , Fator de Transcrição AP-1/metabolismo , Animais , Dinoprostona/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Crit Rev Food Sci Nutr ; 57(1): 82-94, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25831235

RESUMO

Cancers have been the leading cause of death worldwide and the prevalence of obesity is also increasing in these few decades. Interestingly, there is a direct association between cancer and obesity. Each year, more than 90,000 cancer deaths are caused by obesity or overweight. The dietary pattern in Crete, referred as the traditional Mediterranean diet, is believed to confer Crete people the low mortality rates from cancers. Nevertheless, the antiobesity effect of the Mediterranean diet is less studied. Given the causal relationship between obesity and cancer, the antiobesity effect of traditional Mediterranean diet might contribute to its anticancer effects. In this regard, we will critically review the anticancer and antiobesity effects of this diet and its dietary factors. The possible mechanisms underlying these effects will also be discussed.


Assuntos
Dieta Saudável , Dieta Mediterrânea , Medicina Baseada em Evidências , Neoplasias/prevenção & controle , Obesidade/prevenção & controle , Sobrepeso/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/uso terapêutico , Fármacos Antiobesidade/análise , Fármacos Antiobesidade/uso terapêutico , Anticarcinógenos/análise , Anticarcinógenos/uso terapêutico , Qualidade dos Alimentos , Grécia/epidemiologia , Humanos , Neoplasias/epidemiologia , Neoplasias/etiologia , Neoplasias/imunologia , Obesidade/epidemiologia , Obesidade/imunologia , Obesidade/fisiopatologia , Azeite de Oliva/química , Azeite de Oliva/normas , Azeite de Oliva/uso terapêutico , Sobrepeso/epidemiologia , Sobrepeso/imunologia , Sobrepeso/fisiopatologia , Cooperação do Paciente , Risco , Vinho/efeitos adversos , Vinho/análise
8.
Lipids Health Dis ; 16(1): 28, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153015

RESUMO

BACKGROUND: The effects of short-term high fat diets on physiology are elusive and the molecular changes following fat overconsumption remain largely unknown. In this study, we aimed to evaluate exercise capacity in mice fed with a high fat diet (HFD) for 3 days and investigate the molecular mechanisms in the early response to high-fat feeding. METHODS: Exercise capacity was assessed by weight-loaded swimming test in mice fed a control diet (10 kcal% fat) or a HFD (60 kcal% fat) for 3 days. Global gene expression of ten important tissues (brain, heart, liver, spleen, lung, kidney, stomach, duodenum, skeletal muscle and blood) was analyzed using RNA Sequencing. RESULTS: A HFD for just 3 days can induce 71% decrease of exercise performance prior to substantial weight gain (P <0.01). Principle component analysis revealed that differential gene expression patterns existed in the ten tissues. Out of which, the brain, spleen and lung were demonstrated to have more pronounced transcriptional changes than other tissues. Biological process analysis for differentially expressed genes in the brain, spleen and lung showed that dysregulation of peripheral and central immune response had been implicated in the early stage of HFD exposure. Neurotransmission related genes and circulatory system process related genes were significantly down-regulated in the brain and lung, respectively. CONCLUSIONS: Our findings provide new insights for the deleterious effects of high-fat feeding, especially revealing that the lung maybe as a new important target attacked by short-term high-fat feeding.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Animal/fisiologia , Transcriptoma , Animais , Sangue/metabolismo , Peso Corporal , Encéfalo/fisiologia , Pulmão/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Baço/fisiologia
9.
Pharmacol Res ; 114: 219-234, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816506

RESUMO

The genus Rosa (roses) has long been used in traditional or folk medicine worldwide for the treatment of various types of arthritis including rheumatoid arthritis and osteoarthritis. The active constituents of Rosa spp., such as flavonoids, triterpenoids, and phytosterols, could act on different targets in the NF-κB signalling pathway, inhibit pro-inflammatory enzymes (e.g. MMPs and COX-2), lower the production of inflammatory cytokines and chemokines (e.g. TNF-α, IL-1ß, IL-6, CCL5), and reduce oxidative stress, which in turn suppress inflammatory processes. Preclinical and clinical studies have demonstrated that these species possess analgesic, anti-arthritic, anti-inflammatory, anti-oxidative and bone-preserving activities. This review presents comprehensive overview of the mode and mechanism of action of various extracts, preparations, and active constituents from this genus. The dynamic beneficial effects of the products prepared from this genus in arthritis management are summarized. The Rosa genus is a treasure waiting for further exploration by researchers interested in the development of safe and effective anti-arthritic agents.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Artrite/tratamento farmacológico , Rosa/química , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Artrite/imunologia , Citocinas/imunologia , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , NF-kappa B/imunologia , Dor/tratamento farmacológico , Dor/imunologia , Fenóis/química , Fenóis/farmacocinética , Fenóis/farmacologia , Fenóis/uso terapêutico , Fitoterapia/métodos , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/uso terapêutico
10.
Bioorg Med Chem Lett ; 26(1): 181-5, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620254

RESUMO

Oxidative stress-induced myocardial apoptosis is a key step in the pathogenesis of ischemic heart disease. Calycosin is a phytoestrogen extracted from Radix astragali. In this study, we examined the effects and mechanisms of calycosin on oxidative stress-induced myocardial apoptosis. Molecular docking showed that calycosin can couple into binding site of ERα and ß. Pretreatment with calycosin increased the expression levels of ERα and ß. In H9C2 cells, H2O2 reduced cell viability and induced apoptosis, however, calycosin diminished the effects of H2O2 in a dose-dependent manner. Pretreatment with ICI 182,780, an estrogen receptor inhibitor, negated the protective effect of calycosin against H2O2-induced apoptosis. In addition, Akt phosphorylation was upregulated by calycosin mono treatment and downregulated by co-treatment with calycosin and ICI 182,780. These data demonstrated that calycosin exhibits anti-apoptotic effects by activating ERα/ß and enhancing Akt phosphorylation in cardiomyocytes.


Assuntos
Apoptose/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Isoflavonas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/química , Isoflavonas/química , Modelos Moleculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Relação Estrutura-Atividade
11.
BMC Complement Altern Med ; 16: 24, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801616

RESUMO

BACKGROUND: Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking (a processing method) can reduce the toxicity and enhance the efficacy of XF. METHODS: Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method. RESULTS: SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular formulae and mass fragments, as well as literature data. CONCLUSION: Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical profiles. Further studies are warranted to establish the relationship between the alteration of chemical profiles and the changes of medicinal properties caused by stir-baking.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Xanthium/química , Animais , Anti-Inflamatórios não Esteroides/química , Antineoplásicos Fitogênicos/química , Culinária , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Frutas/química , Humanos , Lipopolissacarídeos , Camundongos , Células Tumorais Cultivadas
12.
J Biol Chem ; 289(44): 30525-30537, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25228694

RESUMO

Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.


Assuntos
Adipócitos Brancos/fisiologia , Melanoma Experimental/patologia , Ácido Palmítico/metabolismo , Neoplasias Cutâneas/patologia , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Metabolismo dos Lipídeos , Masculino , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Gordura Subcutânea/patologia , Carga Tumoral
13.
Mol Cancer ; 14: 103, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971889

RESUMO

BACKGROUND: Melanoma is notorious for its propensity to metastasize, which makes treatment extremely difficult. Receptor tyrosine kinase c-Met is activated in human melanoma and is involved in melanoma progression and metastasis. Hepatocyte growth factor (HGF)-mediated activation of c-Met signaling has been suggested as a therapeutic target for melanoma metastasis. Quercetin is a dietary flavonoid that exerts anti-metastatic effect in various types of cancer including melanoma. In a previous report, we demonstrated that quercetin inhibited melanoma cell migration and invasion in vitro, and prevented melanoma cell lung metastasis in vivo. In this study, we sought to determine the involvement of HGF/c-Met signaling in the anti-metastatic action of quercetin in melanoma. METHODS: Transwell chamber assay was conducted to determine the cell migratory and invasive abilities. Western blotting was performed to determine the expression levels and activities of c-Met and its downstream molecules. And immunoblotting was performed in BS(3) cross-linked cells to examine the homo-dimerization of c-Met. Quantitative real-time PCR analysis was carried out to evaluate the mRNA expression level of HGF. Transient transfection was used to overexpress PAK or FAK in cell models. Student's t-test was used in analyzing differences between two groups. RESULTS: Quercetin dose-dependently suppressed HGF-stimulated melanoma cell migration and invasion. Further study indicated that quercetin inhibited c-Met phosphorylation, reduced c-Met homo-dimerization and decreased c-Met protein expression. The effect of quercetin on c-Met expression was associated with a reduced expression of fatty acid synthase. In addition, quercetin suppressed the phosphorylation of c-Met downstream molecules including Gab1 (GRB2-associated-binding protein 1), FAK (Focal Adhesion Kinase) and PAK (p21-activated kinases). More importantly, overexpression of FAK or PAK significantly reduced the inhibitory effect of quercetin on the migration of the melanoma cells. CONCLUSIONS: Our findings suggest that suppression of the HGF/c-Met signaling pathway contributes to the anti-metastatic action of quercetin in melanoma.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo
14.
Exp Dermatol ; 23(11): 855-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073716

RESUMO

Our previous studies showed that atractylenolide II (AT-II) has antimelanoma effects in B16 melanoma cells. In this study, we investigated the involvement of STAT3 signalling in the antimelanoma action of AT-II. Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts. In B16 and A375 cells, AT-II (20, 40 µm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II. These data suggest that inhibition of STAT3 signalling contributes to the antimelanoma action of AT-II. Our findings shed new light on the mechanism of action underlying the antimelanoma effects of AT-II and provide further pharmacological basis for developing AT-II as a novel melanoma chemopreventive/chemotherapeutic agent.


Assuntos
Lactonas/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Animais , Anticarcinógenos/química , Apoptose , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Heliyon ; 10(8): e29093, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665562

RESUMO

Objective: Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results: A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions: SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.

16.
Int Immunopharmacol ; 128: 111529, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244516

RESUMO

BACKGROUND: Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) plays a crucial role in DNA base excision repair, cell apoptosis, cell signaling, and the regulation of transcription factors through redox modulation and the control of reactive oxygen species (ROS). However, the connection between APE1 and acute liver injury (ALI) remains enigmatic. This study aims to unravel the molecular mechanisms underlying ALI and shed light on the role of APE1 in this context. METHOD: We induced acute liver injury (ALI) in mice by lipopolysaccharide/D-galactosamine (LPS/GalN) and intervened with the APE1 inhibitor E3330. We examined the expression of APE1 in ALI mice and ALI patient tissues after E3330 intervention, Additionally, we measured hepatic oxidative stress, ferroptosis, and autophagy marker proteins and genes. In establishing an AML-12 liver cell injury model, we utilized the Nrf2 activator tert-butylhydroquinone (TBHQ) as an intervention and examined APE1, Nrf2, ferroptosis-related proteins, and autophagy marker proteins and mRNA. RESULTS: Both ALI patients and ALI mice exhibited reduced APE1 expression levels. After E3330 intervention, there was a significant exacerbation of liver injury, oxidative stress, and a reduction in the expression of proteins, including GPX4, X-CT, ATG3, ATG5, and LC3 (LC3I/II). Consistent results were also observed in AML-12 cells. With TBHQ intervention, Nrf2 expression increased, along with the expression of proteins associated with iron death and autophagy. Mechanistically, APE1 activation regulates Nrf2 to inhibit ferroptosis and promote autophagy in hepatocytes. CONCLUSION: The data suggest that APE1 is a pivotal player in ALI, closely linked to its regulation of Nrf2. Strategies involving APE1 activation to modulate Nrf2, thereby inhibiting hepatocyte ferroptosis and promoting autophagy, may represent innovative therapeutic approaches for ALI. Additionally, tert-butylhydroquinone (TBHQ) holds significant promise in the treatment of acute liver injury.


Assuntos
Benzoquinonas , Ferroptose , Hidroquinonas , Leucemia Mieloide Aguda , Propionatos , Animais , Humanos , Camundongos , Autofagia/genética , Hepatócitos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
17.
Phytomedicine ; 128: 155355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555773

RESUMO

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Assuntos
Hipnóticos e Sedativos , Metabolômica , Polyporales , Espectrometria de Massas em Tandem , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/química , Camundongos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polyporales/química , Masculino , Agaricales/química , Sono/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Reishi/química
18.
J Ethnopharmacol ; 300: 115705, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS: The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS: Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION: ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Guanosina Monofosfato , Animais , Cardiomegalia/tratamento farmacológico , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Deficiência da Energia Yang , Peixe-Zebra
19.
Phytomedicine ; 109: 154572, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610164

RESUMO

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Assuntos
Flavonas , Melanoma , Animais , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Flavonas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
20.
Phytomedicine ; 114: 154748, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933519

RESUMO

BACKGROUND: Wenqingyin (WQY) is a classic traditional Chinese medicine formula used to treat various inflammatory diseases. However, its protective activity against ferroptosis in the pathogenesis of sepsis-induced liver injury and underlying mechanisms remain unclear. PURPOSE: This study aimed to determine the therapeutic efficacy and potential mechanism of action of WQY in sepsis-induced liver injury both in vivo and in vitro. METHODS: In vivo: Lipopolysaccharide was intraperitoneally injected into nuclear factor erythroid 2-related factor 2 (Nrf2) knockout (Nrf2-/-) and wild-type mice to construct a septic liver injury mouse model. Experimental mice were intraperitoneally injected with ferroptosis-1 and intragastrically administered WQY. In vitro: LO2 hepatocytes were stimulated with erastin to activate ferroptosis and later treated with varying concentrations of WQY and an Nrf2 inhibitor (ML385). Pathological damage was evaluated following hematoxylin and eosin staining. Lipid peroxidation levels were assessed using malondialdehyde, superoxide dismutase, and glutathione, as well as reactive oxygen species fluorescent probes. JC-1 staining was performed to evaluate the mitochondrial membrane potential damage. Quantitative reverse transcription polymerase chain reaction and western blot assay were performed to detect the related gene and protein levels. The levels of inflammatory factors were measured using Enzyme-Linked Immunosorbent Assay kits. RESULTS: In vivo, sepsis-induced liver injury activated ferroptosis in mouse liver tissue. Fer-1 and WQY attenuated septic liver injury, which was associated with increased Nrf2 expression. Deletion of the Nrf2 gene led to aggravation of septic liver injury. The effect of WQY on the attenuation of septic liver injury was partially abolished by the knockdown of Nrf2. In vitro, erastin-induced ferroptosis resulted in decreased hepatocyte viability, lipid peroxidation, and mitochondrial membrane potential damage. WQY protected hepatocytes from erastin-induced ferroptosis by activating Nrf2. The attenuation effect of ferroptosis in hepatocytes by WQY was partially abolished by the inhibition of Nrf2. CONCLUSION: Ferroptosis has a critical role in the development of sepsis-mediated liver injury. Inhibition of ferroptosis is a possible novel treatment strategy for alleviating septic liver injury. WQY attenuates sepsis-mediated liver injury by suppressing ferroptosis in hepatocytes, which is related to its ability to activate Nrf2.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Sepse , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa