RESUMO
The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic ß-cells are only partly understood. Here we investigate the involvement of ß-catenin in these processes. Reducing ß-catenin levels using siRNA knockdown attenuated GSIS in a range of ß-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both ß-cell models and isolated islets by short-term exposure to the ß-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases ß-catenin levels results in an increase in insulin secretion. The timing of these effects suggests that ß-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that the overexpression of the transcriptional co-activator of ß-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating ß-catenin from the plasma membrane pool to the nucleus. We show that ß-catenin depletion disrupts the intracellular actin cytoskeleton, and by using total internal reflectance fluorescence (TIRF) microscopy, we found that ß-catenin is required for the glucose- and incretin-induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that ß-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1, or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how the overexpression of TCF7L2 may attenuate insulin secretion.
Assuntos
Citoesqueleto de Actina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretórias/metabolismo , beta Catenina/metabolismo , Citoesqueleto de Actina/genética , Animais , Linhagem Celular , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Vesículas Secretórias/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/genéticaRESUMO
BACKGROUND: Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear. METHODS: We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level. RESULTS: Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling. CONCLUSIONS: AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice. GENERAL SIGNIFICANCE: These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo dos Lipídeos , Metacrilatos/administração & dosagem , Mitocôndrias/metabolismo , Obesidade/metabolismo , Pirimidinas/administração & dosagem , Adipogenia/genética , Animais , Dieta Hiperlipídica , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Metacrilatos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/patologia , Pirimidinas/metabolismo , Estrobilurinas , Triglicerídeos/metabolismoRESUMO
AIM: Sterol-regulatory element binding proteins (SREBPs) are major transcription factors that regulate liver lipid biosynthesis. In this article we reported a novel synthetic compound 2-(3-benzoylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid (ZJ001) that inhibited the SREBP-1c pathway, and effectively reduced hepatic lipid accumulation in diet-induced obesity (DIO) mice. METHODS: A luciferase reporter driven by an SRE-containing promoter transfected into HepG2 cells was used to discover the compound. Two approaches were used to evaluate the lipid-lowering effects of ZJ001: (1) diet-induced obesity (DIO) mice that were treated with ZJ001 (15 mg·kg(-1)·d(-1), po) for 7 weeks; and (2) HepG2 cells and primary hepatocytes used as in vitro models. RESULTS: ZJ001 (10, 20 µmol/L) dose-dependently inhibited the activity of SRE-containing promoter. ZJ001 administration ameliorated lipid metabolism and improved glucose tolerance in DIO mice, accompanied by significantly reduced mRNA levels of SREBP-1C and SREBP-2, and their downstream genes. In HepG2 cells and insulin-treated hepatocytes, ZJ001 (10-40 µmol/L) dose-dependently inhibited lipid synthesis, and reduced mRNA levels of SREBP-1C and SREBP-2, and their downstream genes. Furthermore, ZJ001 dose-dependently increased the phosphorylation of AMPK and regulatory-associated protein of mTOR (Raptor), and suppressed the phosphorylation of mTOR in insulin-treated hepatocytes. Moreover, ZJ001 increased the ADP/ATP ratio in insulin-treated hepatocytes. CONCLUSION: ZJ001 exerts multiple beneficial effects in diet-induced obesity mice. Its lipid-lowering effects may result from the suppression of mTORC1, which regulates SREBP-1c transcription. The results suggest that the SREBP-1c pathway may be a potential therapeutic target for the treatment of lipid metabolic disorders.
Assuntos
Fármacos Antiobesidade/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Tiofenos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fármacos Antiobesidade/química , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tiofenos/químicaRESUMO
The potential immune effects of titanium dioxide nanoparticles (nano-TiO2) are raising concern. Our previous study verified that nano-TiO2 induce local immune response in lung tissue followed by intratracheal instillation administration. In this study, we aim to evaluate the systemic immune effects of nano-TiO2. Sprague Dawley rats were treated by intratracheal instillation with nano-TiO2 at doses of 0.5, 4, and 32 mg/kg body weight, micro-TiO2 with 32 mg/kg body weight and 0.9% NaCl, respectively. The exposure was conducted twice a week, for four consecutive weeks. Histopathological immune organs from exposed animals showed slight congestion in spleen, generally brown particulate deposition in cervical and axillary lymph node. Furthermore, immune function response was characterized by increased proliferation of T cells and B cells following mitogen stimulation and enhanced natural killer (NK) cell killing activity in spleen, accompanying by increased number of B cells in blood. No significant changes of Th1-type cytokines (IL-2 and INF-γ) and Th2-type cytokines (TNF-α and IL-6) were observed. Intratracheal exposure to nano-TiO2 may be one of triggers to be responsible for the systemic immune response. Further study is needed to confirm long-lasting lymphocyte responses and the potential mechanisms.
Assuntos
Nanopartículas/química , Titânio/química , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Instilação de Medicamentos , Interleucina-6/sangue , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Linfonodos/patologia , Masculino , Nanopartículas/toxicidade , Ratos , Ratos Sprague-Dawley , Baço/citologia , Baço/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
In light of the exponential growth in information volume, the significance of graph data has intensified. Graph clustering plays a pivotal role in graph data processing by jointly modeling the graph structure and node attributes. Notably, the practical significance of multi-view graph clustering is heightened due to the presence of diverse relationships within real-world graph data. Nonetheless, prevailing graph clustering techniques, predominantly grounded in deep learning neural networks, face challenges in effectively handling multi-view graph data. These challenges include the incapability to concurrently explore the relationships between multiple view structures and node attributes, as well as difficulties in processing multi-view graph data with varying features. To tackle these issues, this research proposes a straightforward yet effective multi-view graph clustering approach known as SLMGC. This approach uses graph filtering to filter noise, reduces computational complexity by extracting samples based on node importance, enhances clustering representations through graph contrastive regularization, and achieves the final clustering outcomes using a self-training clustering algorithm. Notably, unlike neural network algorithms, this approach avoids the need for intricate parameter settings. Comprehensive experiments validate the supremacy of the SLMGC approach in multi-view graph clustering endeavors when contrasted with prevailing deep neural network techniques.
Assuntos
Algoritmos , Análise por Conglomerados , Redes Neurais de Computação , Humanos , Aprendizado ProfundoRESUMO
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
RESUMO
Stabilization of hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase domain enzymes (PHDs) represents a breakthrough in treating anemia associated with chronic kidney disease. Here, we identified a novel scaffold for noncarboxylic PHD inhibitors by utilizing structure-based drug design (SBDD) and generative models. Iterative optimization of potency and solubility resulted in compound 15 which potently inhibits PHD thus stabilizing HIF-α in vitro. X-ray cocrystal structure confirmed the binding model was distinct from previously reported carboxylic acid PHD inhibitors by pushing away the R383 and Y303 residues resulting in a larger inner subpocket. Furthermore, compound 15 demonstrated a favorable in vitro/in vivo absorption, distribution, metabolism, and excretion (ADME) profile, low drug-drug interaction risk, and clean early safety profiling. Functionally, oral administration of compound 15 at 10 mg/kg every day (QD) mitigated anemia in a 5/6 nephrectomy rat disease model.
Assuntos
Anemia , Inibidores de Prolil-Hidrolase , Insuficiência Renal Crônica , Ratos , Animais , Prolil Hidroxilases , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Anemia/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Administração Oral , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
Traf2- and Nck-interacting kinase (TNIK) has been identified as a promising therapeutic target for the treatment of fibrosis-driven diseases. Utilizing a structure-based drug design workflow, we developed a series of potent TNIK inhibitors that modulate the conformation of the gatekeeper Met105 side chain and access the TNIK back pocket. The lead optimization efforts culminated in the discovery of the recently reported compound 4 (INS018_055), a novel TNIK inhibitor. This molecule demonstrated excellent activity in both enzymatic and cell-based assays, along with high selectivity in a kinome panel. Further, in vitro and in vivo preclinical studies revealed favorable in vitro and in vivo DMPK properties. Results from multiple cell-based and animal models proved that compound 4 exhibits considerable antifibrotic and anti-inflammatory efficacy. Currently, phase II clinical trials of compound 4 are underway for the treatment of idiopathic pulmonary fibrosis (IPF).
RESUMO
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.
RESUMO
Artificial Intelligence (AI) is driving advancements across various fields by simulating and enhancing human intelligence. In Natural Language Processing (NLP), transformer models like the Kerformer, a linear transformer based on a kernel approach, have garnered success. However, traditional attention mechanisms in these models have quadratic calculation costs linked to input sequence lengths, hampering efficiency in tasks with extended orders. To tackle this, Kerformer introduces a nonlinear reweighting mechanism, transforming maximum attention into feature-based dot product attention. By exploiting the non-negativity and non-linear weighting traits of softmax computation, separate non-negativity operations for Query(Q) and Key(K) computations are performed. The inclusion of the SE Block further enhances model performance. Kerformer significantly reduces attention matrix time complexity from O(N2) to O(N), with N representing sequence length. This transformation results in remarkable efficiency and scalability gains, especially for prolonged tasks. Experimental results demonstrate Kerformer's superiority in terms of time and memory consumption, yielding higher average accuracy (83.39%) in NLP and vision tasks. In tasks with long sequences, Kerformer achieves an average accuracy of 58.94% and exhibits superior efficiency and convergence speed in visual tasks. This model thus offers a promising solution to the limitations posed by conventional attention mechanisms in handling lengthy tasks.
RESUMO
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in consumer and industrial products, contributing to their prevalent presence in our surroundings. In this study, several miRNAs in the immuno-related pathways were found to be dysregulated in RAW264.7 cells after 24-h exposure to TiO2 NPs, including miR-29b-3p, which had not been previously found to be associated with the dysregulation of immunity after exposure to TiO2 NPs. The KEGG pathway and GO enrichment analysis suggested that miR-29b-3p functioned both in the T and B cell receptor signaling pathways. The NFAT5 gene was predicted to regulate miR-29b-3p using the MiRDB online database. The expression of miR-29b-3p and NFAT5 was found to be inversely correlated using qRT-PCR and western blotting analysis. Dual-luciferase reporter gene assays demonstrated the precise regulatory relationship between miR-29b-3p and NFAT5. The upregulation of miR-29b-3p was found to reinforce the apoptosis of cells, while no changes were found in terms of the cell cycle or cell proliferation, using MTT, cell apoptosis, and cycle detection experiments. Our results demonstrate that miR-29b-3p is involved in the response of RAW264.7 cells to exposure to TiO2, proving evidence for the further study of the toxicity and mechanisms of nano-TiO2 exposure.
Assuntos
MicroRNAs , Nanopartículas , Apoptose , Macrófagos , TitânioRESUMO
Obesity increases the risk of hepatocellular carcinoma (HCC), but precise identification and characterization of druggable oncogenic pathways that contribute to the progression of NAFLD to HCC, and hence to the increased incidence and aggressiveness of HCC in obese individuals is lacking. In this regard, we demonstrate that the Indian Hedgehog (Ihh) signaling pathway is upregulated in the fatty livers of mice consuming a high fat diet, and furthermore sustained in HCC tumors specifically within the context of a NAFLD microenvironment. Using a diet-induced mouse model of HCC wherein only obese mice develop HCC, targeted ablation of hepatocyte-secreted Ihh results in a decreased tumor burden and lower grade tumors. Ihh activation regulates the transdifferentiation of ciliated stellate cells and proliferation of Epcam+ ductal cells to promote fibrosis. Mechanistically, increased expression of hitherto uncharacterized effectors of Hh pathway, namely Myc and Tgf-ß2 is critical to the observed physiology. This pro-tumorigenic response is driven by increased expression of Wnt5a to effect a poorly-differentiated and invasive tumor phenotype. Wnt5a secreted from activated stellate cells act on Ror2-expressing hepatocytes. We further demonstrate that Wnt5a expression is also elevated in poorly-differentiated HCC cells, suggesting that these ligands are also able to function in an autocrine positive feedback manner to sustain poorly-differentiated tumors. Taken together, our study provides a mechanistic understanding for how Ihh signaling promotes HCC tumorigenesis specifically in obese mice. We propose that therapeutic targeting of the Hh pathway offers benefit for patients with dietary / NAFLD-driven steatotic HCC.
Assuntos
Carcinogênese , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Obesidade/complicações , Animais , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/genética , Proliferação de Células , Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Regulação para CimaRESUMO
The lean diabetic patients with heart failure with preserved ejection fraction (HFpEF) in Asia suffer from adverse clinical outcomes and poor life quality. The suitable animal models are urgently needed for mechanistic study and therapeutic innovations. Our study reports that lipodystrophic mice with seipin depletion are lean, diabetic, and recapitulate major manifestations of clinical HFpEF, thereby clarifying that lean diabetes per se may produce HFpEF characteristics. We further demonstrate that increased cardiac titin phosphorylation and reactive interstitial fibrosis associated with neutrophil extracellular traps lead to left ventricular stiffness and suggest that both pathways may be potential therapeutic targets in Asian HFpEF patients.
RESUMO
This study investigated the role of microRNA(miRNA) in regulating the cytotoxicity of TiO2 nanoparticles (nano-TiO2) to RAW264.7â¯cells. RAW264.7â¯cells were treated with 0 and 100⯵g/ml nano-TiO2 for 24â¯h (for miRNA analysis). The differentially expressed miRNAs were detected using Illumina HiSeq™ 2000 sequencing. Through the bio-informatics analysis, miR-350 was found to play an important role in multiple signaling pathways, including MAPK signaling pathway, NF-kappa B signaling pathway and Apoptosis. To characterize the miR-350 function, miR-350 mimic was transfected into RAW264.7â¯cells for 24â¯h. MTT and Flow Cytometry were performed to detect cell proliferation, apoptosis and cell cycle (repetition), respectively. QRT-PCR, Western Blot methods and Luciferase assays were applied to detect expression of putative target gene PIK3R3. The results showed that miRNA profiles were differentially dysregulated. The apoptosis rate of miR-350 mimic group was significantly higher than negative control group (pâ¯<â¯.05). Cell proliferation and cell cycle had no significant differences between treatment and negative control group. Compared with negative control, the level of protein of PIK3R3 was significantly decreased (pâ¯<â¯.05), and the expression of 3'UTR constructs of PIK3R3 was significantly decreased (pâ¯<â¯.05) in miR-350 mimic group. The expression of miRNAs was changed after exposed to nano-TiO2, and biological function and target gene results showed miR-350 may promote RAW264.7â¯cell apoptosis through the negative regulation of PIK3R3 gene. Our results could provide a basis for further understanding of toxicity and possible mechanisms of nano-TiO2 exposure.
Assuntos
Nanopartículas Metálicas/química , MicroRNAs/metabolismo , Titânio/química , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Metálicas/toxicidade , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células RAW 264.7 , Regulação para Cima/efeitos dos fármacosRESUMO
OBJECTIVE: Mutations to the BSCL2 gene disrupt the protein seipin and cause the most severe form of congenital generalised lipodystrophy (CGL). Affected individuals exhibit a near complete loss of white adipose tissue (WAT) and suffer from metabolic disease. Seipin is critical for adipocyte development in culture and mice with germline disruption to Bscl2 recapitulate the effects of BSCL2 disruption in humans. Here we examined whether loss of Bscl2 specifically in developing adipocytes in vivo is sufficient to prevent adipose tissue development and cause all features observed with congenital BSCL2 disruption. METHODS: We generated and characterised a novel mouse model of Bscl2 deficiency in developing adipocytes (Ad-B2(-/-)) using the adipose-specific Adiponectin-Cre line. RESULTS: We demonstrate that Ad-B2(-/-) mice display early onset lipodystrophy, in common with congenital Bscl2 null mice and CGL2 patients. However, glucose intolerance, insulin resistance, and severe hepatic steatosis are not apparent. Food intake and energy expenditure are unchanged, but Ad-B2(-/-) mice exhibit significantly altered substrate utilisation. We also find differential effects of seipin loss between specific adipose depots revealing new insights regarding their varied characteristics. When fed a high-fat diet, Ad-B2(-/-) mice entirely fail to expand adipose mass but remain glucose tolerant. CONCLUSIONS: Our findings demonstrate that disruption of Bscl2 specifically in developing adipocytes is sufficient to cause the early-onset generalised lipodystrophy observed in patients with mutations in BSCL2. However, this significant reduction in adipose mass does not cause the overt metabolic dysfunction seen in Bscl2 knockout mice, even following a high-fat diet challenge.
Assuntos
Adipócitos/metabolismo , Adipogenia , Metabolismo Energético , Proteínas Heterotriméricas de Ligação ao GTP/genética , Lipodistrofia/genética , Adipócitos/citologia , Animais , Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Brown adipose tissue (BAT) activation and subcutaneous white fat browning are essential components of the thermogenic response to cold stimulus in mammals. microRNAs have been shown to regulate both processes in cis. Here, we identify miR-32 as a BAT-specific super-enhancer-associated miRNA in mice that is selectively expressed in BAT and further upregulated during cold exposure. Inhibiting miR-32 in vivo led to impaired cold tolerance, decreased BAT thermogenesis, and compromised white fat browning as a result of reduced serum FGF21 levels. Further examination showed that miR-32 directly represses its target gene Tob1, thereby activating p38 MAP kinase signaling to drive FGF21 expression and secretion from BAT. BAT-specific miR-32 overexpression led to increased BAT thermogenesis and serum FGF21 levels, which further promotes white fat browning in trans. Our results suggested miR-32 and Tob1 as modulators of FGF21 signaling that can be manipulated for therapeutic benefit against obesity and metabolic syndrome.
Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , MicroRNAs/genética , Gordura Subcutânea/metabolismo , Termogênese , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Gordura Subcutânea/citologia , Gordura Subcutânea/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The present study aimed to investigate the biofunctions of microRNA (miR)125b on lung cancer cells. A miR genechip array was used to examine the differential expression of miRs between 95D lung cancer cells and 16 human bronchial epithelial (HBE) cells. Overexpression of miR125b was observed in the cell lines and in the lung carcinoma tissues compared with the adjacent tissues, confirmed using reverse transcription quantitative polymerase chain reaction. Bioinformatic analysis of miR125b was also performed, including target prediction, gene ontology and pathway analysis. MTT, flow cytometry and Transwell assays were also used to examine the effect of downregulated miR125b on the proliferation, apoptosis, invasive ability and cell cycle of 95D cells. Significant differences were observed in the expression of 45 miRs in the 95D cells compared with those in 16HBE cells and the expression of miR125b was significantly higher in 95D cells compared with that in 16HBE cells as well as in lung tumor tissues compared with that in adjacent tissues. In addition, inhibition of the expression of miR125b in 95D cells induced apoptosis, G1/S phase arrest and reduction of their invasive ability. In addition, bioinformatics software predicted that miR125b was involved in the regulation of several pathways associated with cancer, including the transforming growth factorß, Wnt and mitogenactivated protein kinase signaling pathways. These data indicated for the first time, to the best of our knowledge, that miR125b may function as an oncogene in lung cancer.
Assuntos
Neoplasias Pulmonares/genética , MicroRNAs/genética , Oncogenes/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização WntRESUMO
To explore the potential immunoregulatory mechanisms linking nano TiO2 and pulmonary injury, Sprague Dawley rats were exposed by intra-tracheal instillation to nano TiO2 with the individual doses of 0.5, 4.0 and 32 mg/kgb.w., micro TiO2 with 32 mg/kgb.w. and 0.9% NaCl, respectively. The exposure was conducted twice a week, for four consecutive weeks. The results of lung histology demonstrated increased macrophages accumulation, extensive disruption of alveolar septa, slight alveolar thickness and expansion hyperemia. Mitochondria tumefaction organelles dissolution, endoplasmic reticulum expansion and the gap of nuclear broadening were shown. The changes of IFN-γ and IL-4 level showed no statistical difference. The mRNA expression of GATA-3 was up-regulated, whereas T-bet was significantly down-regulated. The protein expression of T-bet decreased and there were significant differences in nano 4 and 32 mg/kg groups. The imbalance of Th1/Th2 cytokines might be one of the mechanisms of immunotoxicity of respiratory system induced by nano TiO2 particles.
Assuntos
Lesão Pulmonar/imunologia , Nanopartículas/toxicidade , Células Th1/imunologia , Células Th2/imunologia , Titânio/toxicidade , Animais , Citocinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/ultraestrutura , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas com Domínio T/genéticaRESUMO
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has been shown to influence energy metabolism. Hence, we explored a strategy to target PGC-1α expression to treat metabolic syndromes. We developed a high-throughput screening assay that uses the human PGC-1α promoter to drive expression of luciferase. The effects of lead compound stimulation on PGC-1α expression in muscle cells and hepatocytes were investigated in vitro and in vivo. A novel small molecule, ZLN005, led to changes in PGC-1α mRNA levels, glucose uptake, and fatty acid oxidation in L6 myotubes. Activation of AMP-activated protein kinase was involved in the induction of PGC-1α expression. In diabetic db/db mice, chronic administration of ZLN005 increased PGC-1α and downstream gene transcription in skeletal muscle, whereas hepatic PGC-1α and gluconeogenesis genes were reduced. ZLN005 increased fat oxidation and improved the glucose tolerance, pyruvate tolerance, and insulin sensitivity of diabetic db/db mice. Hyperglycemia and dyslipidemia also were ameliorated after treatment with ZLN005. Our results demonstrated that a novel small molecule selectively elevated the expression of PGC-1α in myotubes and skeletal muscle and exerted promising therapeutic effects for treating type 2 diabetes.