Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Asian J Psychiatr ; 87: 103687, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418809

RESUMO

Schizophrenia is a severe mental illness that imposes considerable economic burden on families and society. However, its clinical diagnosis primarily relies on scales and doctors' clinical experience and lacks an objective and accurate diagnostic approach. In recent years, graph convolutional neural networks (GCN) have been used to assist in psychiatric diagnosis owing to their ability to learn spatial-association information. Therefore, this study proposes a schizophrenia automatic recognition model based on graph convolutional neural network. Herein, the resting-state electroencephalography (EEG) data of 103 first-episode schizophrenia patients and 92 normal controls (NCs) were obtained. The automatic recognition model was trained with a nodal feature matrix that comprised the time and frequency-domain features of the EEG signals and local features of the brain network. The most significant regions that contributed to the model classification were identified, and the correlation between the node topological features of each significant region and clinical evaluation metrics was explored. Experiments were conducted to evaluate the performance of the model using 10-fold cross-validation. The best performance in the theta frequency band with a 6 s epoch length and phase-locked value. The recognition accuracy was 90.01%. The most significant region for identifying with first-episode schizophrenia patients and NCs was located in the parietal lobe. The results of this study verify the applicability of the proposed novel method for the identification and diagnosis of schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Encéfalo , Redes Neurais de Computação , Eletroencefalografia , Reconhecimento Psicológico
2.
Front Comput Neurosci ; 16: 1024205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277610

RESUMO

With the development of network science and graph theory, brain network research has unique advantages in explaining those mental diseases, the neural mechanism of which is unclear. Additionally, it can provide a new perspective in revealing the pathophysiological mechanism of brain diseases from the system level. The selection of threshold plays an important role in brain networks construction. There are no generally accepted criteria for determining the proper threshold. Therefore, based on the topological data analysis of persistent homology theory, this study developed a multi-scale brain network modeling analysis method, which enables us to quantify various persistent topological features at different scales in a coherent manner. In this method, the Vietoris-Rips filtering algorithm is used to extract dynamic persistent topological features by gradually increasing the threshold in the range of full-scale distances. Subsequently, the persistent topological features are visualized using barcodes and persistence diagrams. Finally, the stability of persistent topological features is analyzed by calculating the Bottleneck distances and Wasserstein distances between the persistence diagrams. Experimental results show that compared with the existing methods, this method can extract the topological features of brain networks more accurately and improves the accuracy of diagnostic and classification. This work not only lays a foundation for exploring the higher-order topology of brain functional networks in schizophrenia patients, but also enhances the modeling ability of complex brain systems to better understand, analyze, and predict their dynamic behaviors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa