Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458684

RESUMO

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Spodoptera , Endotoxinas/genética , Resistência a Inseticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética
2.
Nurs Ethics ; 31(1): 65-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38111341

RESUMO

The assessment of learning in the ethical domain is one of the most complex aspects to attend in the educational context. In recent years, character education has contributed greatly to different social disciplines, such as education or nursing. However, the development of this approach has run up against several obstacles and limitations, as there is little evidence regarding its long-term effectiveness or its evaluation. This essay aims to identify some of the main difficulties to assess learning in the ethical domain, as obstacles and possible constraints to Aristotelian-based character education. Methodology is analytical and of a philosophical-educational nature, based on which an argumentative analysis is constructed from the bibliographical review of the contributions of classical and contemporary authors. Results show the existence of four major problems and ten associated subproblems, both of an external nature linked to the contextual factors of assessment, and of an internal nature that affect the essence of the process itself, which highlight the difficulty of carrying out assessments of an ethical kind. Far from proposing a pessimistic position, we argue a realistic vision that allows educators at different educational levels to be aware of the limits and critical points of evaluation in the ethical domain.


Assuntos
Aprendizagem , Humanos , Escolaridade
3.
Appl Environ Microbiol ; 89(12): e0164423, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014960

RESUMO

IMPORTANCE: Helicoverpa zea is a major crop pest in the United States that is managed with transgenic corn and cotton that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). However, H. zea has evolved widespread resistance to the Cry proteins produced in Bt corn and cotton, leaving Vip3Aa as the only plant-incorporated protectant in Bt crops that consistently provides excellent control of H. zea. The benefits provided by Bt crops will be substantially reduced if widespread Vip3Aa resistance develops in H. zea field populations. Therefore, it is important to identify resistance alleles and mechanisms that contribute to Vip3Aa resistance to ensure that informed resistance management strategies are implemented. This study is the first report of reduced binding of Vip3Aa to midgut receptors associated with resistance.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Estados Unidos , Zea mays/metabolismo , Endotoxinas/metabolismo , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Hemolisinas/genética , Mariposas/genética , Bacillus thuringiensis/genética , Larva/metabolismo
4.
Annu Rev Entomol ; 66: 121-140, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417820

RESUMO

Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Insetos/genética , Alelos , Animais , Controle de Insetos , Resistência a Inseticidas/genética
5.
BMC Genomics ; 22(1): 179, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711916

RESUMO

BACKGROUND: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. RESULTS: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. CONCLUSIONS: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Assuntos
Fluxo Gênico , Zea mays , Animais , Brasil , Humanos , Quênia , Spodoptera , Zea mays/genética
6.
Proc Natl Acad Sci U S A ; 115(46): 11760-11765, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30381456

RESUMO

Extensive planting of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, rapid evolution of resistance in pests is reducing these benefits. Better understanding of the genetic basis of resistance to Bt crops is urgently needed to monitor, delay, and counter pest resistance. We discovered that a point mutation in a previously unknown tetraspanin gene in the cotton bollworm (Helicoverpa armigera), a devastating global pest, confers dominant resistance to Cry1Ac, the sole Bt protein produced by transgenic cotton planted in China. We found the mutation using a genome-wide association study, followed by fine-scale genetic mapping and DNA sequence comparisons between resistant and susceptible strains. CRISPR/Cas9 knockout of the tetraspanin gene restored susceptibility to a resistant strain, whereas inserting the mutation conferred 125-fold resistance in a susceptible strain. DNA screening of moths captured from 23 field sites in six provinces of northern China revealed a 100-fold increase in the frequency of this mutation, from 0.001 in 2006 to 0.10 in 2016. The correspondence between the observed trajectory of the mutation and the trajectory predicted from simulation modeling shows that the dominance of the mutation accelerated adaptation. Proactive identification and tracking of the tetraspanin mutation demonstrate the potential for genomic analysis, gene editing, and molecular monitoring to improve management of resistance.


Assuntos
Resistência a Inseticidas/genética , Mariposas/genética , Tetraspaninas/genética , Animais , Animais Geneticamente Modificados/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , China , Evolução Molecular , Estudo de Associação Genômica Ampla , Gossypium/genética , Inseticidas/metabolismo , Larva/genética , Larva/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Mutação Puntual/genética
7.
Pestic Biochem Physiol ; 153: 1-8, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30744882

RESUMO

The Cry1Ac protein is the most active insecticidal toxin from the bacterium Bacillus thuringiensis (Bt) to members of the heliothinae subfamily in Lepidoptera, which includes some of the most devastating pests of corn and cotton worldwide. However, there are wide discrepancies in susceptibility among members of this subfamily in the US. Specifically, susceptibility to Cry1Ac in Helicoverpa zea (Hz) is >100-fold lower when compared to Heliothis virescens (Hv) larvae. The biochemical properties and Cry1Ac protoxin processing activity of gut digestive fluids from larvae of Hz and Hv were compared to test their role in differential susceptibility to Cry1Ac. Comparatively lower protease activity, associated with slower Cry1Ac proteolytic processing, was detected in digestive fluids of Hz compared to Hv. Moreover, Cry1Ac toxin processed by Hz digestive fluids displayed significantly lower toxicity in vitro against cultured insect cells compared to toxin activated by Hv proteases. These data support a contributing role for gut proteases in differential susceptibility to Cry1Ac in heliothine larvae.


Assuntos
Proteínas de Bactérias/toxicidade , Agentes de Controle Biológico/toxicidade , Endotoxinas/toxicidade , Trato Gastrointestinal/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/metabolismo , Inseticidas/toxicidade , Larva/enzimologia , Mariposas/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Controle Biológico de Vetores , Proteólise
8.
Mar Drugs ; 16(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513601

RESUMO

Microalgae have been widely recognized as a valuable source of natural, bioactive molecules that can benefit human health. Some molecules of commercial value synthesized by the microalgal metabolism have been proven to display anti-inflammatory activity, including the carotenoids lutein and astaxanthin, the fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), and sulphated polysaccharides. These molecules can accumulate to a certain extent in a diversity of microalgae species. A production process could become commercially feasible if the productivity is high and the overall production process costs are minimized. The productivity of anti-inflammatory molecules depends on each algal species and the cultivation conditions, the latter being mostly related to nutrient starvation and/or extremes of temperature and/or light intensity. Furthermore, novel bioprocess tools have been reported which might improve the biosynthesis yields and productivity of those target molecules and reduce production costs simultaneously. Such novel tools include the use of chemical triggers or enhancers to improve algal growth and/or accumulation of bioactive molecules, the algal growth in foam and the surfactant-mediated extraction of valuable compounds. Taken together, the recent findings suggest that the combined use of novel bioprocess strategies could improve the technical efficiency and commercial feasibility of valuable microalgal bioproducts production, particularly anti-inflammatory compounds, in large scale processes.


Assuntos
Anti-Inflamatórios/metabolismo , Fatores Biológicos/metabolismo , Microalgas/metabolismo , Fotobiorreatores , Tensoativos/farmacologia , Anti-Inflamatórios/isolamento & purificação , Fatores Biológicos/isolamento & purificação , Humanos , Luz , Microalgas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Temperatura
9.
Mar Drugs ; 16(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890662

RESUMO

Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine.


Assuntos
Organismos Aquáticos/metabolismo , Biotecnologia/métodos , Carotenoides/biossíntese , Microalgas/metabolismo , Biomassa , Carotenoides/isolamento & purificação , Carotenoides/uso terapêutico , Carotenoides/toxicidade , Suplementos Nutricionais , Humanos
10.
Mar Drugs ; 16(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304770

RESUMO

Haloferax mediterranei produces C50 carotenoids that have strong antioxidant properties. The response surface methodology (RSM) tool helps to accurately analyze the most suitable conditions to maximize C50 carotenoids production by haloarchaea. The effects of temperature (15⁻50 °C), pH (4-10), and salinity (5⁻28% NaCl (w/v)) on the growth and carotenoid content of H. mediterranei were analyzed using the RSM approach. Growth was determined by measuring the turbidity at 600 nm. To determine the carotenoid content, harvested cells were lysed by freeze/thawing, then re-suspended in acetone and the total carotenoid content determined by measuring the absorbance at 494 nm. The analysis of carotenoids was performed by an HPLC system coupled with mass spectrometry. The results indicated the theoretical optimal conditions of 36.51 or 36.81 °C, pH of 8.20 or 8.96, and 15.01% or 12.03% (w/v) salinity for the growth of haloarchaea (OD600 = 12.5 ± 0.64) and production of total carotenoids (3.34 ± 0.29 mg/L), respectively. These conditions were validated experimentally for growth (OD600 = 13.72 ± 0.98) and carotenoid production (3.74 ± 0.20 mg/L). The carotenoid profile showed four isomers of bacterioruberin (89.13%). Our findings suggest that the RSM approach is highly useful for determining optimal conditions for large-scale production of bacterioruberin by haloarchaea.


Assuntos
Carotenoides/química , Haloferax mediterranei/química , Cromatografia Líquida de Alta Pressão/métodos , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Cloreto de Sódio/química
11.
PLoS Genet ; 11(4): e1005124, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875245

RESUMO

Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Sistema de Sinalização das MAP Quinases , Transportadores de Cassetes de Ligação de ATP/genética , Fosfatase Alcalina/genética , Animais , Bacillus/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Agentes de Controle Biológico/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Ligação Proteica
12.
J Invertebr Pathol ; 142: 5-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480404

RESUMO

Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used as active components of biopesticides and as plant incorporated protectants in transgenic crops. One of the most relevant attributes of these Bt protein-based insecticidal technologies is their high specificity, which assures lack of detrimental effects on non-target insects, vertebrates and the environment. The identification of specificity determinants in Bt insecticidal proteins could guide risk assessment for novel insecticidal proteins currently considered for commercialization. In this work we review the available data on specificity determinants of crystal (Cry) insecticidal proteins as the Bt toxins most well characterized and used in transgenic crops. The multi-step mode of action of the Cry insecticidal proteins allows various factors to potentially affect specificity determination and here we define seven levels that could influence specificity. The relative relevance of each of these determinants on efficacy of transgenic crops producing Cry insecticidal proteins is also discussed.


Assuntos
Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensis , Plantas Geneticamente Modificadas , Conformação Proteica , Relação Estrutura-Atividade
13.
J Invertebr Pathol ; 150: 70-72, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919015

RESUMO

Transgenic soybean producing the Cry1Ac insecticidal protein from the bacterium Bacillus thuringiensis is used to control larvae of the velvetbean caterpillar (Anticarsia gemmatalis Hübner) and the soybean looper [Chrysodeixis includens (Walker)]. The main threat to the sustainability of this technology is the development of resistance, which could be delayed by using pyramiding of diverse Bt insecticidal genes. We report high activity of Cry2Ac7 and Vip3Aa11 but not Cry1Ie2 against larvae of A. gemmatalis and C. includens. In addition, we also report anti-feeding activity of Cry1Ie2 and Cry7Ab3 in adults of the bean leaf beetle [Ceratoma trifurcata (Foster)], an alternative pest of soybean.


Assuntos
Bacillus thuringiensis/metabolismo , Besouros , Proteínas Hemolisinas/metabolismo , Larva , Mariposas , Controle Biológico de Vetores/métodos , Animais , Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Glycine max
14.
Mar Drugs ; 14(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213407

RESUMO

A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture.


Assuntos
Bactérias , Biomassa , Microalgas/fisiologia , Biodegradação Ambiental , Humanos
15.
Appl Environ Microbiol ; 81(11): 3699-705, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795679

RESUMO

Pyramiding of diverse cry toxin genes from Bacillus thuringiensis with different modes of action is a desirable strategy to delay the evolution of resistance in the European corn borer (Ostrinia nubilalis). Considering the dependency of susceptibility to Cry toxins on toxin binding to receptors in the midgut of target pests, a diverse mode of action is commonly defined as recognition of unique binding sites in the target insect. In this study, we present a novel cry1Ie toxin gene (cry1Ie2) as a candidate for pyramiding with Cry1Ab or Cry1Fa in corn to control Ostrinia species larvae. The new toxin gene encodes an 81-kDa protein that is processed to a protease-resistant core form of approximately 55 kDa by trypsin digestion. The purified protoxin displayed high toxicity to Ostrinia furnacalis and O. nubilalis larvae but low to no activity against Spodoptera or heliothine species or the coleopteran Tenebrio molitor. Results of binding assays with (125)I-labeled Cry1Ab toxin and brush border membrane vesicles from O. nubilalis larvae demonstrated that Cry1Ie2 does not recognize the Cry1Ab binding sites in that insect. Reciprocal competition binding assays with biotin-labeled Cry1Ie2 confirmed the lack of shared sites with Cry1Ab or Cry1Fa in O. nubilalis brush border membrane vesicles. These data support Cry1Ie2 as a good candidate for pyramiding with Cry1Ab or Cry1Fa in corn to increase the control of O. nubilalis and reduce the risk of resistance evolution.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Lepidópteros/efeitos dos fármacos , Animais , Bacillus/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Larva/efeitos dos fármacos , Peso Molecular , Ligação Proteica , Análise de Sobrevida , Tenebrio/efeitos dos fármacos , Zea mays/parasitologia
16.
J Invertebr Pathol ; 129: 1-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981133

RESUMO

Insect resistance threatens sustainability of insecticides based on Cry proteins from the bacterium Bacillus thuringiensis (Bt). Since high levels of resistance to Cry proteins involve alterations in Cry-binding midgut receptors, their identification is needed to develop resistance management strategies. Through Illumina sequencing we generated a transcriptome containing 16,161 annotated unigenes for the Oriental leafworm (Spodoptera litura). Transcriptome mining identified 6 contigs with identity to reported lepidopteran Cry toxin receptors. Using PCR we confirmed their expression during the larval stage and compared their quantitative expression in larvae from susceptible and a field-derived Cry1Ca resistant strain of S. litura. Among reduced transcript levels detected for most tested contigs in the Cry1Ca-resistant S. litura larvae, the most dramatic reduction (up to 99%) was detected for alkaline phosphatase contigs. This study significantly expands S. litura transcriptomic resources and provides preliminary identification of putative receptor genes with altered expression in S. litura resistant to Cry1Ca toxin.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Spodoptera/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Larva , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Transcriptoma
17.
Appl Environ Microbiol ; 80(16): 5134-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928872

RESUMO

Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Mariposas/efeitos dos fármacos , Oryza/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Cinética , Mariposas/química , Mariposas/metabolismo , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
Pest Manag Sci ; 80(2): 905-909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822012

RESUMO

BACKGROUND: Implementation of resistance management tools is crucial for the continued efficacy of insect control technologies. An important aspect of insect resistance management (IRM) is the combined or sequential use of different modes-of-action to reduce selection pressure and delay evolution of resistance. This is especially important for insect pests with established ability to develop resistance to insecticides, such as the Colorado potato beetle (Leptinotarsa decemlineata, CPB). A new class of insecticides, based on double-stranded RNA (dsRNA) activating the gene silencing RNA-interference (RNAi) pathway, are currently under review for regulatory approval and commercial use in the USA against CPB. However, there is no information available on the potential for cross-resistance between RNAi insecticides and other classes of insecticides used against CPB. Herein, we aim to fill this knowledge gap by capitalizing on the availability of a CPB strain highly resistant to dsRNAs and test its susceptibility to diverse small-molecule insecticide classes compared to reference dsRNA-susceptible CPB strains. RESULTS: Differences in activity were observed among the four insecticides tested, with abamectin demonstrating highest activity against all three strains of CPB. However, no differences were observed among the dsRNA-resistant and susceptible CPB strains for any of the tested compounds. Overall, these results demonstrate lack of cross-resistance to commonly used chemical insecticides in the dsRNA-resistant strain of CPB. CONCLUSION: These data support the use of these different insecticide classes along with RNAi-based insecticides as part of an effective insect resistance management framework aimed at delaying resistance in CPB. © 2023 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Praguicidas , Solanum tuberosum , Animais , Besouros/genética , Larva , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Praguicidas/farmacologia , Solanum tuberosum/genética , Interferência de RNA
19.
Int J Biol Macromol ; 257(Pt 1): 128654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065453

RESUMO

The bacterium Bacillus thuringiensis (Bt) is the most economically successful biopesticide to date, and Bt insecticidal proteins are produced in transgenic crops for pest control. However, relevant details in the Bt-mediated killing process remain undefined. In our previous research, we observed reduced larval susceptibility to Bt Cry1Ca in Chilo suppressalis, a major rice pest in China, after gut microbiota elimination. Here, we tested the hypothesis that gut microbiota, particularly abundant Enterococcus spp., influences C. suppressalis susceptibility to Cry1Ca. We isolated and identified four Enterococcus spp. from C. suppressalis gut microbiota and evaluated their impact on Cry1Ca toxicity. Among the four Enterococcus spp. identified, three of them (E. casseliflavus, E. faecalis, and E. mundtii) dramatically increased larval mortality when introduced in axenic C. suppressalis challenged with Cry1Ca. Gut epithelial damage by Cry1Ca promoted the translocation of Enterococcus spp. from the gut lumen into the hemocoel, where they proliferated and induced larval melanization and hemocyte apoptosis. Our combined findings demonstrate that the presence of specific gut microbiota can greatly affect susceptibility to Cry1Ca through melanization and apoptosis of hemocytes. Better understanding of the Bt intoxication process guides the development of bio-enhancers for Bt-based microbial biopesticides and potential improvement of transgenic crops.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Oryza , Animais , Enterococcus , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/metabolismo , Mariposas/genética , Larva , Inseticidas/farmacologia , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Animais Geneticamente Modificados , Oryza/genética
20.
J Econ Entomol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748467

RESUMO

Biopesticides based on RNA interference (RNAi) took a major step forward with the first registration of a sprayable RNAi product, which targets the world's most damaging potato pest. Proactive resistance management is needed to delay the evolution of resistance by pests and sustain the efficacy of RNAi biopesticides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa