Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 15(8): 2466-78, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378148

RESUMO

Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression.


Assuntos
Calicreínas/fisiologia , Metaloproteinase 1 da Matriz/metabolismo , Neoplasias da Próstata/patologia , Trombospondina 1/metabolismo , Neoplasias Ósseas/química , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Progressão da Doença , Humanos , Masculino , Neoplasias da Próstata/química , Proteólise
2.
Mol Oncol ; 11(10): 1307-1329, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28510269

RESUMO

The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Calicreínas/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Células Estromais/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fator 1 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptor PAR-1/metabolismo , Células Estromais/metabolismo
3.
EJIFCC ; 25(3): 269-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27683474

RESUMO

Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa