Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Immunol ; 12(1): 37-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21102435

RESUMO

The poly(ADP-ribose) polymerases (PARPs) participate in many biological and pathological processes. Here we report that the PARP-13 shorter isoform (ZAPS), rather than the full-length protein (ZAP), was selectively induced by 5'-triphosphate-modified RNA (3pRNA) and functioned as a potent stimulator of interferon responses in human cells mediated by the RNA helicase RIG-I. ZAPS associated with RIG-I to promote the oligomerization and ATPase activity of RIG-I, which led to robust activation of IRF3 and NF-κB transcription factors. Disruption of the gene encoding ZAPS resulted in impaired induction of interferon-α (IFN-α), IFN-ß and other cytokines after viral infection. These results indicate that ZAPS is a key regulator of RIG-I signaling during the innate antiviral immune response, which suggests its possible use as a therapeutic target for viral control.


Assuntos
Infecções por Avulavirus/metabolismo , RNA Helicases DEAD-box/metabolismo , Vírus da Doença de Newcastle/fisiologia , Infecções por Orthomyxoviridae/metabolismo , Orthomyxoviridae/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Isoformas de Proteínas/metabolismo , Infecções por Avulavirus/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Poli I-C/imunologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Receptores Imunológicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Replicação Viral/genética
2.
Biochem Biophys Res Commun ; 551: 127-132, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33725574

RESUMO

Mast cell-deficient mice are helpful for understanding the roles of mast cells in vivo. To date, a dozen mouse models for mast cell deficiency have been reported. However, mice with a specific depletion of all populations of mast cells have not been reported. We generated knock-in mice, termed Mcpt5/Cma1DTR mice, expressing human diphtheria toxin A (DT) receptor under the endogenous promoter of Mcpt5 (also known as Cma1), which encodes mouse mast cell protease-5. Flow cytometry and histological analysis showed that intraperitoneal injection of DT induced almost complete depletion of mast cells in heterozygote Mcpt5/Cma1DTR/+ mice. The deletion rates of mast cells in peritoneal cavity, mesentery, abdominal skin, ear skin, and glandular stomach were 99.9%, 100%, 98.7%, 97.7%, and 100%, respectively. Passive cutaneous anaphylaxis reaction also revealed mast cell deficiency in ear skin after DT treatment. Other than mast cells, a small percentage of marginal zone B cells in Mcpt5/Cma1DTR/+ mice were killed by DT treatment. In conclusion, the Mcpt5/Cma1DTR/+ mouse model is valuable for achieving conditional depletion of all populations of mast cells without inducing a marked reduction in other cells.


Assuntos
Separação Celular/métodos , Quimases/genética , Mastócitos/citologia , Modelos Animais , Animais , Células do Tecido Conjuntivo/citologia , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Mucosa/citologia , Regiões Promotoras Genéticas/genética
3.
Emerg Infect Dis ; 25(5): 883-890, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002057

RESUMO

Bacillus cereus is associated with foodborne illnesses characterized by vomiting and diarrhea. Although some B. cereus strains that cause severe extraintestinal infections and nosocomial infections are recognized as serious public health threats in healthcare settings, the genetic backgrounds of B. cereus strains causing such infections remain unknown. By conducting pulsed-field gel electrophoresis and multilocus sequence typing, we found that a novel sequence type (ST), newly registered as ST1420, was the dominant ST isolated from the cases of nosocomial infections that occurred in 3 locations in Japan in 2006, 2013, and 2016. Phylogenetic analysis showed that ST1420 strains belonged to the Cereus III lineage, which is much closer to the Anthracis lineage than to other Cereus lineages. Our results suggest that ST1420 is a prevalent ST in B. cereus strains that have caused recent nosocomial infections in Japan.


Assuntos
Bacillus cereus/classificação , Bacillus cereus/genética , Bacteriemia , Infecção Hospitalar/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Alelos , Infecção Hospitalar/epidemiologia , DNA Bacteriano , Genes Bacterianos , Genótipo , Infecções por Bactérias Gram-Positivas/epidemiologia , Humanos , Japão/epidemiologia , Tipagem Molecular , Filogenia
4.
J Infect Dis ; 218(suppl_5): S397-S402, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30010949

RESUMO

Niemann-Pick C1 (NPC1), a host receptor involved in the envelope glycoprotein (GP)-mediated entry of filoviruses into cells, is believed to be a major determinant of cell susceptibility to filovirus infection. It is known that proteolytically digested Ebola virus (EBOV) GP interacts with 2 protruding loops in domain C of NPC1. Using previously published structural data and the National Center for Biotechnology Information Single-Nucleotide Polymorphism (SNP) database, we identified 10 naturally occurring missense SNPs in human NPC1. To investigate whether these SNPs affect cell susceptibility to filovirus infection, we generated Vero E6 cell lines stably expressing NPC1 with SNP substitutions and compared their susceptibility to vesicular stomatitis virus pseudotyped with filovirus GPs and infectious EBOV. We found that some of the substitutions resulted in reduced susceptibility to filoviruses, as indicated by the lower titers and smaller plaque/focus sizes of the viruses. Our data suggest that human NPC1 SNPs may likely affect host susceptibility to filoviruses.


Assuntos
Proteínas de Transporte/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick , Receptores Virais/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
5.
BMC Complement Altern Med ; 18(1): 138, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720160

RESUMO

BACKGROUND: Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. METHODS: Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. RESULTS: Intraperitoneal treatment of PEE induces CD11b+, Gr-1+ myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. CONCLUSION: Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation. Given the strong anti-inflammatory action of MDSCs, the induction of MDSCs by PEE and kaempferol is expected to be useful for anti-diabetic and anti-inflammatory therapies.


Assuntos
Quempferóis/farmacologia , Macrófagos/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Preparações de Plantas/farmacologia , Própole/farmacologia , Tecido Adiposo/citologia , Animais , Brasil , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Etanol , Citometria de Fluxo , Inflamação/metabolismo , Quempferóis/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Preparações de Plantas/química , Própole/química
6.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012970

RESUMO

Influenza is a respiratory disease induced by infection by the influenza virus, which is a member of Orthomyxoviridae family. This infectious disease has serious impacts on public health systems and results in considerable mortality and economic costs throughout the world. Based on several experimental studies, massive host immune reaction is associated with the disease severity of influenza. Programmed cell death is typically induced during virus infection as a consequence of host immune reaction to limit virus spread by eliminating niches for virus propagation without causing inflammation. However, in some viral infectious diseases, such as influenza, in the process of immune reaction, aberrant induction of programmed cell death disturbs the maintenance of organ function. Current reports show that there are different types of programmed cell death that vary in terms of molecular mechanisms and/or associations with inflammation. In addition, these novel types of programmed cell death are associated with pathogenesis rather than suppressing virus propagation in the disease course. Here, we review our current understanding of mechanisms of programmed cell death in the pathogenesis of influenza.


Assuntos
Apoptose/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Influenza Humana/virologia , Modelos Imunológicos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia
7.
J Virol ; 89(12): 6481-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855742

RESUMO

UNLABELLED: Multiple host molecules are known to be involved in the cellular entry of filoviruses, including Ebola virus (EBOV); T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) have been identified as attachment and fusion receptors, respectively. However, the molecular mechanisms underlying the entry process have not been fully understood. We found that TIM-1 and NPC1 colocalized and interacted in the intracellular vesicles where EBOV glycoprotein (GP)-mediated membrane fusion occurred. Interestingly, a TIM-1-specific monoclonal antibody (MAb), M224/1, prevented GP-mediated membrane fusion and also interfered with the binding of TIM-1 to NPC1, suggesting that the interaction between TIM-1 and NPC1 is important for filovirus membrane fusion. Moreover, MAb M224/1 efficiently inhibited the cellular entry of viruses from all known filovirus species. These data suggest a novel mechanism underlying filovirus membrane fusion and provide a potential cellular target for antiviral compounds that can be universally used against filovirus infections. IMPORTANCE: Filoviruses, including Ebola and Marburg viruses, cause rapidly fatal diseases in humans and nonhuman primates. There are currently no approved vaccines or therapeutics for filovirus diseases. In general, the cellular entry step of viruses is one of the key mechanisms to develop antiviral strategies. However, the molecular mechanisms underlying the entry process of filoviruses have not been fully understood. In this study, we demonstrate that TIM-1 and NPC1, which serve as attachment and fusion receptors for filovirus entry, interact in the intracellular vesicles where Ebola virus GP-mediated membrane fusion occurs and that this interaction is important for filovirus infection. We found that filovirus infection and GP-mediated membrane fusion in cultured cells were remarkably suppressed by treatment with a TIM-1-specific monoclonal antibody that interfered with the interaction between TIM-1 and NPC1. Our data provide new insights for the development of antiviral compounds that can be universally used against filovirus infections.


Assuntos
Ebolavirus/fisiologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Linhagem Celular , Cercopithecus , Humanos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Receptores Virais/genética , Análise de Sequência de DNA
8.
J Biol Chem ; 289(11): 7599-614, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24474693

RESUMO

The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Influenza A/enzimologia , Proteínas Virais/metabolismo , Replicação Viral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A/fisiologia , Microscopia de Fluorescência , NF-kappa B/metabolismo , Plasmídeos/metabolismo , RNA Viral/metabolismo , Frações Subcelulares/metabolismo , Transcrição Gênica
9.
Biochem Biophys Res Commun ; 455(3-4): 223-8, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25449273

RESUMO

Filoviruses, including Ebola and Marburg viruses, cause severe hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Human T-cell immunoglobulin and mucin domain 1 (TIM-1) is one of the host proteins that have been shown to promote filovirus entry into cells. In this study, we cloned TIM-1 genes from three different African green monkey kidney cell lines (Vero E6, COS-1, and BSC-1) and found that TIM-1 of Vero E6 had a 23-amino acid deletion and 6 amino acid substitutions compared with those of COS-1 and BSC-1. Interestingly, Vero E6 TIM-1 had a greater ability to promote the infectivity of vesicular stomatitis viruses pseudotyped with filovirus glycoproteins than COS-1-derived TIM-1. We further found that the increased ability of Vero E6 TIM-1 to promote virus infectivity was most likely due to a single amino acid difference between these TIM-1s. These results suggest that a polymorphism of the TIM-1 molecules is one of the factors that influence cell susceptibility to filovirus infection, providing a new insight into the molecular basis for the filovirus host range.


Assuntos
Infecções por Filoviridae/genética , Filoviridae/patogenicidade , Glicoproteínas de Membrana/genética , Polimorfismo Genético , Receptores Virais/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular , Citometria de Fluxo , Predisposição Genética para Doença , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Rim/citologia , Rim/virologia , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Receptores Virais/metabolismo , Homologia de Sequência de Aminoácidos , Células Vero
10.
Jpn J Vet Res ; 60(2-3): 71-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23094582

RESUMO

New approaches to the treatment of influenza have been designed based on the highly conserved antigenicity of the M2 envelope protein among influenza A virus strains. The present study examined the anti-viral activities of an anti-M2 ectodomain (M2e) monoclonal antibody (clone rM2ss23), which binds to the M2 proteins of the influenza A virus strains A/ Aichi/2/68 (H3N2) (Aichi) and A/PJR/8/34 (H1N1) (PR8). The results showed that rM2ss23 bound to both Aichi and PR8 M2 proteins expressed on the cell surface. While the antibody did not prevent virus entry into cells, it significantly inhibited plaque formation by the Aichi strain in a dose-dependent manner when infected cells were cultured in the presence of the antibody. By contrast, the growth of PR8 (H1N1) was not affected by the antibody. A reverse genetics approach revealed that the inhibitory effect of rM2ss23 on the Aichi virus was abolished by replacing the genes encoding the HA and/or M proteins with those of the PR8 strain. These results suggest that rM2ss23 prevents virus release from infected cells and further suggest that the mechanisms underlying the virus budding mediates by HA and M2 proteins might differ between the Aichi and PR8 strains.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Animais , Antígenos Virais/análise , Linhagem Celular , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Genética Reversa/veterinária , Proteínas da Matriz Viral/imunologia
11.
Viruses ; 14(1)2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062364

RESUMO

Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host's organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein.


Assuntos
Herpesvirus Humano 6/metabolismo , Nectinas/genética , Nectinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Linhagem Celular , Técnicas de Inativação de Genes , Herpesvirus Humano 6/classificação , Herpesvirus Humano 6/genética , Humanos
12.
Biochem Biophys Res Commun ; 409(4): 717-22, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21621516

RESUMO

Glycosaminoglycans (GAGs) have diverse functions in the body and are involved in viral infection. The purpose of this study was to evaluate the possible roles of the E-disaccharide units GlcAß1-3GalNAc(4,6-O-disulfate) of chondroitin sulfate (CS), a GAG involved in neuritogenesis and neuronal migration, in Japanese encephalitis virus (JEV) infection. Soluble CS-E (sCS-E) derived from squid cartilage inhibited JEV infection in African green monkey kidney-derived Vero cells and baby hamster kidney-derived BHK cells by interfering with viral attachment. In contrast, sCS-E enhanced viral infection in the mouse neuroblastoma cell line Neuro-2a, despite the fact that viral attachment to Neuro-2a cells was inhibited by sCS-E. This enhancement effect in Neuro-2a cells seemed to be related to increased viral RNA replication and was also observed in a rat infection model in which intracerebral coadministration of sCS-E with JEV in 17-day-old rats resulted in higher brain viral loads than in rats infected without sCS-E administration. These results show the paradoxical effects of sCS-E on JEV infection in different cell types and indicate that potential use of sCS-E as an antiviral agent against JEV infection should be approached with caution considering its effects in the neuron, the major target of JEV.


Assuntos
Antivirais/farmacologia , Sulfatos de Condroitina/farmacologia , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Camundongos , Ratos , Células Vero , Replicação Viral/efeitos dos fármacos
13.
Vaccine ; 39(29): 3940-3951, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34090697

RESUMO

Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos Antivirais , Células Apresentadoras de Antígenos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , RNA Viral , Vacinas de Produtos Inativados , Vírion
14.
PeerJ ; 7: e6718, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30997291

RESUMO

The anthrax toxin is a virulence factor produced by the bacterium Bacillus anthracis. Transcription of anthrax toxin genes is controlled by the transcription factor AtxA. Thus, AtxA is thought to be a key factor for the pathogenicity of B. anthracis. Despite its important role in B. anthracis infection, the molecular mechanism by which AtxA controls expression of anthrax toxin remains unclear. This study aimed to characterize the molecular mechanism of AtxA-mediated regulation of protective antigen (PA), a component of anthrax toxin encoded by the pagA gene. First, the interaction between the upstream region of pagA and AtxA was evaluated in vivo by constructing a transcriptional fusion of the upstream region with an auxotrophic marker. The results showed that (i) the upstream region of pagA suppressed transcription of the downstream gene and (ii) AtxA recovered suppressed transcription. Second, in vitro analysis using a gel mobility shift assay was performed to evaluate binding specificity of the AtxA-DNA interaction. The result showed sequence-independent binding of AtxA to DNA. Taken together, our findings suggest that the expression of PA was suppressed by the upstream region of pagA and that an interaction of AtxA and the upstream region releases the suppression.

16.
Vaccine ; 37(15): 2158-2166, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30857932

RESUMO

In contrast to current ether- or detergent-disrupted "split" vaccines (SVs) for influenza, inactivated whole influenza virus particle vaccines (WPVs) retain the original virus structure and components and as such may confer similar immunity to natural infection. In a collaboration between academia and industry, the potential of WPV as a new seasonal influenza vaccine was investigated. Each of the four seasonal influenza vaccine manufacturers in Japan prepared WPVs and SVs from the same batches of purified influenza virus. Both mice and monkeys vaccinated with the WPVs exhibited superior immune responses to those vaccinated with the corresponding SVs. Vaccination with A/California/07/2009 (H1N1) WPV enabled mice to survive a lethal challenge dose of homologous virus whereas those vaccinated with SV succumbed to infection within 6 days. Furthermore, mice vaccinated with WPV induced substantial numbers of multifunctional CD8+ T cells, important for control of antigenically drifted influenza virus strains. In addition, cytokines and chemokines were detected at early time points in the sera of mice vaccinated with WPV but not in those animals vaccinated with SV. These results indicate that WPVs induce enhanced innate and adaptive immune responses compared to equivalent doses of SVs. Notably, WPV at one fifth of the dose of SV was able to induce potent immunity with limited production of IL-6, one of the pyrogenic cytokines. We thus propose that WPVs with balanced immunogenicity and safety may set a new global standard for seasonal influenza vaccines.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Interleucina-6/sangue , Infecções por Orthomyxoviridae/prevenção & controle , Vírion/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiocinas/sangue , Citocinas/sangue , Feminino , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Interleucina-6/imunologia , Japão , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
17.
PLoS One ; 13(10): e0205986, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335853

RESUMO

In Zambia, anthrax outbreaks among cattle are reported on nearly an annual basis. Presently, there is a lack of serological assays and information to develop an anthrax management and control strategy. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) based on recombinant protective antigen domain 1 (rPA-D1) of Bacillus anthracis was developed and used to detect anti-PA antibodies in cattle in Zambia. An antigen coating of 10 ng/well and a serum dilution of 1:100 were determined to be the optimal rPA-D1 ELISA titration conditions. The intra- and inter-assay % coefficients of variation were less than 10% and 15%, respectively. The rPA-D1 ELISA could detect seroconversion in the cattle 1 month after anthrax vaccination. In a cross-sectional study conducted in the Western Province, Zambia, 187 serum samples from 8 herds of cattle were screened for anti-PA antibodies using the rPA-D1 ELISA. The seropositive rate of the serum samples was 8%, and the mean anti-PA antibody was 0.358 ELISA units. Additionally, we screened 131 cattle serum samples from Lusaka, which is a nonendemic area, and found no significant association between the antibody levels and sampling area (endemic versus nonendemic area). Conversely, significant differences were observed between the anti-PA antibody levels and herds, anti-PA antibody levels and vaccination status and anti-PA antibody levels and vaccination timing. Collectively, these findings suggest that the rPA-D1 ELISA is a useful tool for the detection of anti-PA antibodies in cattle in Zambia. The low proportion of seropositive sera indicates that there is inadequate cattle vaccination in the Western Province and, in addition to other epidemiological factors, this may precipitate the anthrax outbreak recurrence.


Assuntos
Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Antraz/sangue , Antraz/imunologia , Antraz/veterinária , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/isolamento & purificação , Toxinas Bacterianas/isolamento & purificação , Bovinos , Geografia , Zâmbia
18.
J Biochem ; 163(1): 31-38, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036651

RESUMO

Several microbial molecules with pathogen-associated molecular patterns stimulate host innate immune responses. The innate immune system plays a crucial role in activating acquired immune response via cytokine production and antigen presentation. Previous studies have shown that Aureobasidium pullulans-cultured fluid (AP-CF), which contains ß-glucan, exhibits adjuvant activity and renders mice resistance to influenza A virus infection; however, the underlying mechanism remains elusive. In this study, we investigated the innate immune response to AP-CF. We found that intraperitoneal administration of AP-CF increased the serum level of IL-18 and the number of splenic IFN-γ producing CD4+ cells during influenza A virus infection. The adjuvant effect of AP-CF was distinct from that of alum, which is known to have the ability to stimulate a Th2 immune response. In addition, AP-CF injection barely increased the number of peritoneal neutrophils and inflammatory macrophages, whereas alum injection markedly increased the number of neutrophils and inflammatory macrophages, suggesting that AP-CF is a weak inducer of inflammation compared to alum. AP-CF induced IL-18 production by DC2.4 cells, a dendritic cell line, and by peritoneal exudate cells that include peritoneal macrophages. Collectively, our findings indicate that AP-CF is an adjuvant that promotes the Th1 response during influenza A virus infection.


Assuntos
Ascomicetos/química , Glucanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Interleucina-18/biossíntese , Infecções por Orthomyxoviridae/tratamento farmacológico , Células Th1/efeitos dos fármacos , Animais , Glucanos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Células Th1/virologia
19.
Anticancer Res ; 27(2): 761-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17465200

RESUMO

BACKGROUND: Despite improvements in chemotherapy and surgery in the treatment of osteosarcoma, satisfactory results are still difficult to achieve. New therapeutic modalities need to be developed for the improvement of these treatments. TRAIL (TNF-related apoptosis inducing ligand) is known as a selective apoptosis inducer in most tumor cells, but not in normal cells. Therefore, TRAIL is a good candidate target for the treatment of tumors. However, sensitivity of osteosarcoma cells to TRAIL-induced apoptosis is lower than that of other types of tumor cells. Recently, DAP3 (death associated protein 3) was demonstrated to play a critical role in TRAIL-mediated apoptosis through activation of pro-caspase-8. Here, we found that LKB1, a serine/threonine kinase, expressed in bone and soft tissue sarcoma cells, associated with DAP3. We also demonstrated that expression of DAP3 induced apoptosis in osteosarcoma cells. Furthermore, expression of LKB1 induced apoptosis and co-expression of LKB1 with DAP3 strongly induced apoptosis in osteosarcoma cells. In addition, expression of LKB1 kinase dead mutant, LKB1 (K78M), inhibited DAP3-induced apoptosis in these cells. These results suggest that LKB1 is critical for TRAIL-induced apoptosis induction, cooperating with DAP3 in osteosarcoma cells. It is predicted that LKB1 and DAP3 could be critical target molecules for the treatment of osteosarcomas.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Caspases/metabolismo , Ativação Enzimática , Humanos , Isoenzimas/metabolismo , Células Jurkat , Camundongos , Células NIH 3T3 , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia , Estimulação Química , Transfecção
20.
Nat Commun ; 8: 13957, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045014

RESUMO

Expansion of autoreactive follicular helper T (Tfh) cells is tightly restricted to prevent induction of autoantibody-dependent immunological diseases, such as systemic lupus erythematosus (SLE). Here we show expression of an orphan immune regulator, death receptor 6 (DR6/TNFRSF21), on a population of Tfh cells that are highly expanded in lupus-like disease progression in mice. Genome-wide screening reveals an interaction between syndecan-1 and DR6 resulting in immunosuppressive functions. Importantly, syndecan-1 is expressed specifically on autoreactive germinal centre (GC) B cells that are critical for maintenance of Tfh cells. Syndecan-1 expression level on GC B cells is associated with Tfh cell expansion and disease progression in lupus-prone mouse strains. In addition, Tfh cell suppression by DR6-specific monoclonal antibody delays disease progression in lupus-prone mice. These findings suggest that the DR6/syndecan-1 axis regulates aberrant GC reactions and could be a therapeutic target for autoimmune diseases such as SLE.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Genoma , Lúpus Eritematoso Sistêmico/genética , Receptores do Fator de Necrose Tumoral/genética , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos B/patologia , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais , Sindecana-1/genética , Sindecana-1/imunologia , Linfócitos T Auxiliares-Indutores/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa