RESUMO
Low frequency vibrational spectra of submonolayer N3 dye (Ru(4,4(')-dicarboxy-2,2(')-bipyridine)2(NCS)2) adsorbed on TiO2 (110) were reported by using fourth-order coherent Raman spectroscopy, which is interface-sensitive vibrational spectroscopy. Most of the peaks observed in the experiment were at the same frequency as that of Raman and infrared spectra of the dye and TiO2. Two interfacial modes at 640 and 100 cm(-1) and one resonantly enhanced phonon at 146 cm(-1) appeared in addition to the pure TiO2 and N3 spectra. Adsorption of N3 dye on TiO2 contributed to the enhancement of 100 and 146 cm(-1) mode. The results not only reported interfacial low-frequency vibrations of TiO2 (110) with N3 dye adsorption but also suggested the coupling between the surface vibrations of TiO2 and charge transfer between N3 dye and TiO2 on the surface.