Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1246: 340863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764769

RESUMO

Supercritical fluid chromatography (SFC) is often coupled with electrospray ionization mass spectrometry (ESI-MS) for analyte detection because of its detection capability to a wide range of chemical properties. However, MS sensitivity is highly dependent on the chromatographic conditions, so that it is important to understand the ionization mechanism to determine the optimal chromatographic conditions. The ionization mechanism in SFC/ESI-MS is different to that of liquid chromatography because of the use of CO2 as a mobile phase. Some studies have suggested that alkoxycarbonic acids are formed in the mixture of CO2 and the alcohol modifier, and these species contribute to ionization in CO2-assisted SFC/ESI-MS. Therefore, in this study, we investigated CO2-assisted ESI to test this hypothesis, and we confirmed that methoxylcarbonic acid is generated in CO2/methanol mixtures and contributed to ion generation and detection because it acts as a proton donor in positive-ion mode. However, methoxylcarbonic acid interfered with ionization in negative-ion mode. Addition of ammonium acetate, which is often added to the modifier for negative ion detection in SFC/MS analysis, did not contribute to the recovery of MS sensitivity, although it tended to suppress the formation of metoxylcarbonic acid. This is likely due to ion suppression and neutralization of the negative sites of the analytes by anions or cations derived from ammonium acetate in the negative ion mode. Thus, additive-free methanol/CO2 was the most suitable mobile phase for obtaining high sensitivity in SFC/MS. To demonstrate the practicality of these findings, we tested our optimal mobile phase selection for pesticide analysis. In addition, we tested the addition of 0, 1, and 5 mM ammonium formate to the modifier and make-up solvent, and found that the addition of 1 mM ammonium formate gave the best results in pesticides analysis. In SFC/MS, salt is often added to improve separation or prevent desorption, but our findings suggest that the concentration of salt must be kept as low as possible to achieve highly sensitive MS detection. The results of this study reveal the best selection of the optimal conditions for the modifier and make-up solvent for CO2-assisted SFC/MS analysis and will be useful for the method development in SFC/MS.

2.
Talanta ; 231: 122317, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965011

RESUMO

Probe electrospray ionization (PESI) is an ambient ionization mass spectrometry technique (AIMS) that is primarily used in qualitative studies, though researchers have recently combined it with sample preparation for the quantitative analysis of various analytes in biological matrices. This study presents a method that integrates solid-phase microextraction with PESI for direct coupling to a triple quadrupole mass spectrometer, and examines its ability to quantitate drugs of abuse. Intra- and inter-probe reproducibility experiments were conducted to assess the stability and reproducibility of the extraction-phase-coated PESI probes (coating length: 2 mm; coating thickness: 6.5 µm). This research is the first documented instance wherein highly sensitive determinations were successfully attained using these microextraction and micro-desorption techniques in conjunction with small volumes of sample and extraction phase. A mixture consisting of IPA/H2O (1/1 v/v) + 0.1% FA was determined to be the optimal desorption solvent for SPME-PESI-MS/MS, as it facilitated high analyte enrichment in a picolitre of the solvent, which acted at the same time as efficient electrospray media. Furthermore, a method of quantifying drugs of abuse in 30 µL of plasma without matrix modification was also developed. This method had an intra-day accuracy within the 80-120% range for all eight drugs of abuse at concentrations of 3, 30, and 90 pg µL-1; the exception to this result was lorazepam at 30 pg µL-1, which had an intra-day accuracy of 122%. The lower limit of quantification (LLOQ) for fentanyl and nordiazepam was pg µL-1; the LLOQ for buprenorphine, codeine, diazepam, lorazepam, and propranolol was 5 pg µL-1; and the LLOQ of oxazepam was 10 pg µL-1.


Assuntos
Preparações Farmacêuticas , Microextração em Fase Sólida , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
J Chromatogr A ; 1626: 461363, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797842

RESUMO

Analytical techniques to determine volatile compounds such as flavor, aroma, and fragrances are in high demand due to their wide range of applications in industry, the chemical properties of them are very diverse. Supercritical fluid chromatography (SFC) is capable of high speed, high peak capacity separation and has a high separation coverage. It is also an advantageous for preparative purifications due to its unique mobile phase conditions. However, there is no column commercially available for SFC that is suitable to comprehensively separate volatile compounds. SFC is limited to the use of silica-based columns due to weak retentions and polymer-based column issues such as pressure, swelling and shrinkage tolerances. This study demonstrated comprehensive analytical method for volatile in SFC using a highly cross-linked styrene divinylbenzene (SDVB) polymer-based column, newly developed for SFC. In this study, 23 typical volatile compounds with a wide variety of chemical properties were selected as model compounds. The newly developed SDVB column showed, compared to conventional silica-based columns (k > 0.3), an excellent overall and substantial improved retentions (k > 1.6) under SFC mobile phase conditions. It was also able to retain esters (hydroxy acetate, pentyl butylate, methyl salicylate) and non-polar terpenes (limonene, pinene) that did not show sufficient retention in any other commercially available silica-based columns. Aldehydes reacting on NH2 column due to Schiff base formation were also successfully eluted. It was confirmed that SDVB column provided comprehensive separation and wide coverage for volatile compounds.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Poliestirenos/química , Compostos de Vinila/química , Espectrometria de Massas , Dióxido de Silício , Terpenos/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
4.
J Chromatogr A ; 1508: 138-147, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28624150

RESUMO

Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logPow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for practical use in the multiresidue analysis of a wide range of compounds that requires high sensitivity.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas/métodos , Praguicidas/química , Cromatografia com Fluido Supercrítico/instrumentação , Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa