Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Protein Expr Purif ; 117: 67-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26394093

RESUMO

The epithelial sodium channel (ENaC) plays a critical role in maintaining Na(+) homeostasis in various tissues throughout the body. An understanding of the structure of the ENaC subunits has been developed from homology modeling based on the related acid sensing ion channel 1 (ASIC1) protein structure, as well as electrophysiological approaches. However, ENaC has several notable functional differences compared to ASIC1, thereby providing justification for determination of its three-dimensional structure. Unfortunately, this goal remains elusive due to several experimental challenges. Of the subunits that comprise a physiological hetero-trimeric αßγENaC, the α-subunit is unique in that it is capable of forming a homo-trimeric structure that conducts Na(+) ions. Despite functional and structural interest in αENaC, a key factor complicating structural studies has been its interaction with multiple other proteins, disrupting its homogeneity. In order to address this issue, a novel protocol was used to reduce the number of proteins that associate and co-purify with αENaC. In this study, we describe a novel expression system coupled with a two-step affinity purification approach using NiNTA, followed by a GFP antibody column as a rapid procedure to improve the purity and yield of rat αENaC.


Assuntos
Canais Epiteliais de Sódio , Expressão Gênica , Animais , Canais Epiteliais de Sódio/biossíntese , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/isolamento & purificação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
2.
Am J Physiol Cell Physiol ; 309(5): C308-19, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26108662

RESUMO

Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-ß1. Short hairpin RNA knockdown of integrin-ß1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-ß1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-ß1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-ß1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Actinas/metabolismo , Glioma/metabolismo , Integrina beta1/metabolismo , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Ligação Proteica/fisiologia
3.
J Biol Chem ; 287(6): 4053-65, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22130665

RESUMO

In this study, we have investigated the role of a glioma-specific cation channel assembled from subunits of the Deg/epithelial sodium channel (ENaC) superfamily, in the regulation of migration and cell cycle progression in glioma cells. Channel inhibition by psalmotoxin-1 (PcTX-1) significantly inhibited migration and proliferation of D54-MG glioma cells. Both PcTX-1 and benzamil, an amiloride analog, caused cell cycle arrest of D54-MG cells in G(0)/G(1) phases (by 30 and 40%, respectively) and reduced cell accumulation in S and G(2)/M phases after 24 h of incubation. Both PcTX-1 and benzamil up-regulated expression of cyclin-dependent kinase inhibitor proteins p21(Cip1) and p27(Kip1). Similar results were obtained in U87MG and primary glioblastoma multiforme cells maintained in primary culture and following knockdown of one of the component subunits, ASIC1. In contrast, knocking down δENaC, which is not a component of the glioma cation channel complex, had no effect on cyclin-dependent kinase inhibitor expression. Phosphorylation of ERK1/2 was also inhibited by PcTX-1, benzamil, and knockdown of ASIC1 but not δENaC in D54MG cells. Our data suggest that a specific cation conductance composed of acid-sensing ion channels and ENaC subunits regulates migration and cell cycle progression in gliomas.


Assuntos
Pontos de Checagem do Ciclo Celular , Movimento Celular , Bloqueadores do Canal de Sódio Epitelial , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Amilorida/análogos & derivados , Amilorida/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Glioma/genética , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Peptídeos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Canais de Sódio/genética , Venenos de Aranha/farmacologia
4.
Am J Physiol Cell Physiol ; 302(7): C943-65, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22277752

RESUMO

The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.


Assuntos
Agonistas do Canal de Sódio Epitelial , Bloqueadores do Canal de Sódio Epitelial , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Agonistas de Canais de Sódio , Canais Iônicos Sensíveis a Ácido , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo
5.
Am J Physiol Cell Physiol ; 300(6): C1246-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21346156

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive of the primary brain tumors. These tumors express multiple members of the epithelial sodium channel (ENaC)/degenerin (Deg) family and are associated with a basally active amiloride-sensitive cation current. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test the hypothesis that ASIC1 interacts with αENaC and γENaC at the cellular level, we have used total internal reflection fluorescence microscopy (TIRFM) in live rat astrocytes transiently cotransfected with cDNAs for ASIC1-DsRed plus αENaC-yellow fluorescent protein (YFP) or ASIC1-DsRed plus γENaC-YFP. TIRFM images show colocalization of ASIC1 with both αENaC and γENaC. Furthermore, using TIRFM in stably transfected D54-MG cells, we also found that ASIC1 and αENaC both localize to a submembrane region following exposure to pH 6.0, similar to the acidic conditions found in the core of a glioblastoma lesion. Using high-resolution clear native gel electrophoresis, we found that ASIC1 forms a complex with ENaC subunits which migrates at ≈480 kDa in D54-MG glioma cells. These data suggest that different ENaC/Deg subunits interact and could combine to form a hybrid channel that likely underlies the amiloride-sensitive current seen in human glioma cells.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Glioma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/citologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Canais Epiteliais de Sódio/genética , Glioma/patologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Sódio/genética
6.
J Biol Chem ; 285(13): 9627-9635, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20048170

RESUMO

Amiloride is a small molecule diuretic, which has been used to dissect sodium transport pathways in many different systems. This drug is known to interact with the epithelial sodium channel and acid-sensing ion channel proteins, as well as sodium/hydrogen antiporters and sodium/calcium exchangers. The exact structural basis for these interactions has not been elucidated as crystal structures of these proteins have been challenging to obtain, though some involved residues and domains have been mapped. This work examines the interaction of amiloride with acid-sensing ion channel-1, a protein whose structure is available using computational and experimental techniques. Using molecular docking software, amiloride and related molecules were docked to model structures of homomeric human ASIC-1 to generate potential interaction sites and predict which analogs would be more or less potent than amiloride. The predictions made were experimentally tested using whole-cell patch clamp. Drugs previously classified as NCX or NHE inhibitors are shown to also inhibit hASIC-1. Potential docking sites were re-examined against experimental data to remove spurious interaction sites. The voltage sensitivity of inhibitors was also examined. Using the aggregated data from these computational and experimental experiments, putative interaction sites for amiloride and hASIC-1 have been defined. Future work will experimentally verify these interaction sites, but at present this should allow for virtual screening of drug libraries at these putative interaction sites.


Assuntos
Amilorida/farmacologia , Proteínas do Tecido Nervoso/química , Canais de Sódio/química , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Células CHO , Galinhas , Cricetinae , Cricetulus , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
7.
J Biol Chem ; 285(35): 27130-27143, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20601429

RESUMO

Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Serina Endopeptidases/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Oócitos , Serina Endopeptidases/genética , Canais de Sódio/genética , Xenopus
9.
Am J Physiol Cell Physiol ; 296(2): C372-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19091960

RESUMO

Human acid-sensing ion channel 1b (hASIC1b) is a H(+)-gated amiloride-sensitive cation channel. We have previously shown that glioma cells exhibit an amiloride-sensitive cation conductance. Amiloride and the ASIC1 blocker psalmotoxin-1 decrease the migration and proliferation of glioma cells. PKC also abolishes the amiloride-sensitive conductance of glioma cells and inhibits hASIC1b open probability in planar lipid bilayers. In addition, hASIC1b's COOH terminus has been shown to interact with protein interacting with C kinase (PICK)1, which targets PKC to the plasma membrane. Therefore, we tested the hypothesis that PKC regulation of hASIC1b at specific PKC consensus sites inhibits hASIC1b function. We mutated three consensus PKC phosphorylation sites (T26, S40, and S499) in hASIC1b to alanine, to prevent phosphorylation, and to glutamic acid or aspartic acid, to mimic phosphorylation. Our data suggest that S40 and S499 are critical sites mediating the modulation of hASIC1b by PKC. We expressed mutant hASIC1b constructs in Xenopus oocytes and measured acid-activated currents by two-electrode voltage clamp. T26A and T26E did not exhibit acid-activated currents. S40A was indistinguishable from wild type (WT), whereas S40E, S499A, and S499D currents were decreased. The PKC activators PMA and phorbol 12,13-dibutyrate inhibited WT hASIC1b and S499A, and PMA had no effect on S40A or on WT hASIC1b in oocytes pretreated with the PKC inhibitor chelerythrine. Chelerythrine inhibited WT hASIC1b and S40A but had no effect on S499A or S40A/S499A. PKC activators or the inhibitor did not affect the surface expression of WT hASIC1b. These data show that the two PKC consensus sites S40 and S499 differentially regulate hASIC1b and mediate the effects of PKC activation or PKC inhibition on hASIC1b. This will result in a deeper understanding of PKC regulation of this channel in glioma cells, information that may help in designing potentially beneficial therapies in their treatment.


Assuntos
Sequência Consenso , Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Benzofenantridinas/farmacologia , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Humanos , Cinética , Potenciais da Membrana , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Oócitos , Dibutirato de 12,13-Forbol/farmacologia , Fosforilação , Conformação Proteica , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Canais de Sódio/química , Canais de Sódio/genética , Relação Estrutura-Atividade , Acetato de Tetradecanoilforbol/farmacologia , Xenopus laevis
10.
Gene ; 313: 91-101, 2003 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-12957380

RESUMO

Acid sensing ion channel (ASIC)2 belongs to the amiloride-sensitive Na(+)-channel/ degenerin family. Our previous studies suggested that differential regulation of ASIC2 expression occurs between high-grade glial-derived tumor cells and normal astrocytes. To investigate the mechanisms involved in the regulation of ASIC2 gene expression, the human ASIC2 promoter region (-1551 to +117) was cloned and characterized. The ASIC2 promoter lacked a canonical TATA box, but contained one putative CCAAT box. Nucleotide sequencing of the promoter revealed the presence of a number of transcription factor-binding sites and a 404 bp CpG island upstream the transcription start site. Nested deletion mutants and transfection results showed that the construct between -133 and +117 base pairs conferred basal transcription specific activity. Mutation of Sp1 and CP2 sites in this region resulted in a 70 and 95% decrease in promoter activity, respectively. Gel shift assays demonstrated the existence of specific protein binding to the SP1 and CP2 elements. There was no mutation in the CpG island in six glioma cell lines, but methylation-specific PCR showed methylation in some of glioma cell lines and tumor tissues, and treatment with the methylation inhibitor 5-Aza-2'-deoxycytidine could partially restore ASIC2 expression in cell lines, suggesting that epigenetic mechanisms may contribute to dysregulated ASIC2 expression.


Assuntos
Azacitidina/análogos & derivados , Proteínas de Membrana , Proteínas do Tecido Nervoso , Regiões Promotoras Genéticas/genética , Canais de Sódio/genética , Canais Iônicos Sensíveis a Ácido , Azacitidina/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Encéfalo/metabolismo , Clonagem Molecular , Ilhas de CpG/genética , DNA/química , DNA/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Glioma/fisiopatologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Canais de Sódio/fisiologia , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos
12.
J Biol Chem ; 284(26): 17625-33, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19395383

RESUMO

Acid-sensing ion channel-1 (ASIC-1) is a proton-gated ion channel implicated in nociception and neuronal death during ischemia. Recently the first crystal structure of a chicken ASIC was obtained. Expanding upon this work, homology models of the human ASICs were constructed and evaluated. Energy-minimized structures were tested for validity by in silico docking of the models to psalmotoxin-1, which potently inhibits ASIC-1 and not other members of the family. The data are consistent with prior radioligand binding and functional assays while also explaining the selectivity of PcTX-1 for homomeric hASIC-1a. Binding energy calculations suggest that the toxin and channel create a complex that is more stable than the channel alone. The binding is dominated by the coulombic contributions, which account for why the toxin-channel interaction is not observed at low pH. The computational data were experimentally verified with single channel and whole-cell electrophysiological studies. These validated models should allow for the rational design of specific and potent peptidomimetic compounds that may be useful for the treatment of pain or ischemic stroke.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/química , Venenos de Aranha/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Eletrofisiologia , Humanos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Peptídeos , Conformação Proteica , Canais de Sódio/genética , Canais de Sódio/metabolismo
13.
J Biol Chem ; 284(36): 24526-41, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19561078

RESUMO

High grade gliomas such as glioblastoma multiforme express multiple members of the epithelial sodium channel (ENaC)/Degenerin family, characteristically displaying a basally active amiloride-sensitive cation current not seen in normal human astrocytes or lower grade gliomas. Using quantitative real time PCR, we have shown higher expression of ASIC1, alphaENaC, and gammaENaC in D54-MG human glioblastoma multiforme cells compared with primary human astrocytes. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test this hypothesis we made dominant negative cDNAs for ASIC1, alphaENaC, gammaENaC, and deltaENaC. D54-MG cells transfected with the dominant negative constructs for ASIC1, alphaENaC, or gammaENaC showed reduced protein expression and a significant reduction in the amiloride-sensitive whole cell current as compared with untransfected D54-MG cells. Knocking down alphaENaC or gammaENaC also abolished the high P(K)(+)/P(Na)(+) of D54-MG cells. Knocking down deltaENaC in D54-MG cells reduced deltaENaC protein expression but had no effect on either the whole cell current or K(+) permeability. Using co-immunoprecipitation we show interactions between ASIC1, alphaENaC, and gammaENaC, consistent with these subunits interacting with each other to form an ion channel in glioma cells. We also found a significant inhibition of D54-MG cell migration after ASIC1, alphaENaC, or gammaENaC knockdown, consistent with the hypothesis that ENaC/Degenerin subunits play an important role in glioma cell biology.


Assuntos
Movimento Celular , Canais Epiteliais de Sódio/metabolismo , Glioblastoma/mortalidade , Potenciais da Membrana , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Sódio/genética
14.
J Biol Chem ; 282(35): 25548-59, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17613525

RESUMO

Amiloride-sensitive ion channels are formed from homo- or heteromeric combinations of subunits from the epithelial Na+ channel (ENaC)/degenerin superfamily, which also includes the acid-sensitive ion channel (ASIC) family. These channel subunits share sequence homology and topology. In this study, we have demonstrated, using confocal fluorescence resonance energy transfer microscopy and co-immunoprecipitation, that ASIC and ENaC subunits are capable of forming cross-clade intermolecular interactions. We have also shown that combinations of ASIC1 with ENaC subunits exhibit novel electrophysiological characteristics compared with ASIC1 alone. The results of this study suggest that heteromeric complexes of ASIC and ENaC subunits may underlie the diversity of amiloride-sensitive cation conductances observed in a wide variety of tissues and cell types where co-expression of ASIC and ENaC subunits has been observed.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Células CHO , Cátions/metabolismo , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos/fisiologia , Subunidades Proteicas/genética , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética
15.
Am J Physiol Cell Physiol ; 293(3): C1181-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17615161

RESUMO

Despite intensive research, brain tumors remain among the most difficult type of malignancies to treat, due largely to their diffusely invasive nature and the associated difficulty of adequate surgical resection. To migrate through the brain parenchyma and to proliferate, glioma cells must be capable of significant changes in shape and volume. We have previously reported that glioma cells express an amiloride- and psalmotoxin-sensitive cation conductance that is not found in normal human astrocytes. In the present study, we investigated the potential role of this ion channel to mediate regulatory volume increase in glioma cells. We found that the ability of the cells to volume regulate subsequent to cell shrinkage by hyperosmolar solutions was abolished by both amiloride and psalmotoxin 1. This toxin is thought to be a specific peptide inhibitor of acid-sensing ion channel (ASIC1), a member of the Deg/ENaC superfamily of cation channels. We have previously shown this toxin to be an effective blocker of the glioma cation conductance. Our data suggest that one potential role for this conductance may be to restore cell volume during the cell's progression thorough the cell cycle and while the tumor cell migrates within the interstices of the brain.


Assuntos
Amilorida/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Pressão Osmótica , Peptídeos , Sódio/metabolismo , Venenos de Aranha/farmacologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
16.
J Biol Chem ; 282(47): 34381-91, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17878160

RESUMO

High-grade glioma cells express subunits of the ENaC/Deg superfamily, including members of ASIC subfamily. Our previous work has shown that glioma cells exhibit a basally active cation current, which is not present in low-grade tumor cells or normal astrocytes, and that can be blocked by amiloride. When ASIC2 is present within the channel complex in the plasma membrane, the channel is rendered non-functional because of inherent negative effectors that require ASIC2. We have previously shown that high-grade glioma cells functionally express this current because of the lack of ASIC2 in the plasma membrane. We now hypothesize that ASIC2 trafficking in glioma cells is regulated by a specific chaperone protein, namely Hsc70. Our results demonstrated that Hsc70 co-immunoprecipitates with ASIC2 and that it is overexpressed in glioma cells as compared with normal astrocytes. In contrast, there was no difference in the expression of calnexin, which also co-immunoprecipitates with ASIC2. In addition, glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes. Transfection of Hsc70 siRNA inhibited the constitutively activated amiloride-sensitive current, decreased migration, and increased ASIC2 surface expression in glioma cells. These results support an association between Hsc70 and ASIC2 that may underlie the increased retention of ASIC2 in the endoplasmic reticulum of glioma cells. The data also suggest that decreasing Hsc70 expression promotes reversion of a high-grade glioma cell to a more normal astrocytic phenotype.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Canais de Sódio/biossíntese , Canais Iônicos Sensíveis a Ácido , Astrócitos/metabolismo , Calnexina/biossíntese , Calnexina/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Proteínas de Choque Térmico HSC70/genética , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Canais de Sódio/genética , Transfecção
17.
J Biol Chem ; 281(28): 19220-32, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16704974

RESUMO

Gliomas are primary brain tumors with a complex biology characterized by antigenic and genomic heterogeneity and a propensity for invasion into normal brain tissue. High grade glioma cells possess a voltage-independent, amiloride-inhibitable, inward Na+ current. This current does not exist in normal astrocytes or low grade tumor cells. Inhibition of this conductance decreases glioma growth and cell migration making it a potential therapeutic target. Our previous results have shown that the acid-sensing ion channels (ASICs), members of the epithelial Na+ channel (ENaC)/degenerin (DEG) family of ion channels are part of this current pathway. We hypothesized that one member of the ENaC/DEG family, ASIC2, is retained intracellularly and that it is the lack of functional expression of ASIC2 at the cell surface that results in hyperactivity of this conductance in high grade gliomas. In this study we show that the chemical chaperone, glycerol, and the transcriptional regulator, sodium 4-phenylbutyrate, inhibit the constitutively activated inward current and reduce cell growth and migration in glioblastoma multiforme. The results suggest that these compounds induce the movement of ASIC2 to the plasma membrane, and once there, the basally active inward current characteristic of glioma cells is abolished by inherent negative regulatory mechanisms. This in turn compromises the ability of the glioma cell to migrate and proliferate. These results support the hypothesis that the conductance pathway in high grade glioma cells is comprised of ENaC/DEG subunits and that abolishing this channel activity promotes a reversion of a high grade glioma cell to a phenotype resembling that of normal astrocytes.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Amilorida/farmacologia , Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Glioblastoma/patologia , Glicerol/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenilbutiratos/farmacologia , Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
18.
Am J Physiol Cell Physiol ; 289(2): C361-71, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15800052

RESUMO

Despite extensive work in the field of glioblastoma research no significant increase in survival rates for this devastating disease has been achieved. It is known that disturbance of intracellular Ca(2+) ([Ca(2+)](i)) and intracellular pH (pH(i)) regulation could be involved in tumor formation. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a major regulator of [Ca(2+)](i). We have investigated the effect of inhibition of SERCA by thapsigargin (TG) on [Ca(2+)](i) and pH(i) in human primary glioblastoma multiforme (GBM) cells and GBM cell lines, compared with normal human astrocytes, using the fluorescent indicators fura-2 and BCECF, respectively. Basal [Ca(2+)](i) was higher in SK-MG-1 and U87 MG but not in human primary GBM cells compared with normal astrocytes. However, in tumor cells, TG evoked a much larger and faster [Ca(2+)](i) increase than in normal astrocytes. This increase was prevented in nominally Ca(2+)-free buffer and by 2-APB, an inhibitor of store-operated Ca(2+) channels. In addition, TG-activated Ca(2+) influx, which was sensitive to 2-APB, was higher in all tumor cell lines and primary GBM cells compared with normal astrocytes. The pH(i) was also elevated in tumor cells compared with normal astrocytes. TG caused acidification of both normal and all GBM cells, but in the tumor cells, this acidification was followed by an amiloride- and 5-(N,N-hexamethylene)-amiloride-sensitive recovery, indicating involvement of a Na(+)/H(+) exchanger. In summary, inhibition of SERCA function revealed a significant divergence in intracellular Ca(2+) homeostasis and pH regulation in tumor cells compared with normal human astrocytes.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Glioblastoma/metabolismo , Tapsigargina/farmacologia , Astrócitos/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Líquido Intracelular/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
19.
News Physiol Sci ; 15: 165-171, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11390902

RESUMO

A new family of Cl(-) channels widely expressed in epithelia has been identified. These proteins are associated with Ca(2+)-sensitive conductive Cl(-) transport when heterologously expressed. This family may underlie the Ca(2+)-mediated Cl(-) conductance responsible for rescue of the cystic fibrosis knockout mouse from significant airway disease.

20.
Am J Physiol Cell Physiol ; 283(2): C646-50, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12107075

RESUMO

The hypothesis that there is a highly conserved, positively charged region distal to the second transmembrane domain in alpha-ENaC (epithelial sodium channel) that acts as a putative receptor site for the negatively charged COOH-terminal beta- and gamma-ENaC tails was tested in mutagenesis experiments. After expression in Xenopus oocytes, alpha-ENaC constructs in which positively charged arginine residues were converted into negatively charged glutamic acids could not be inhibited by blocking peptides. These observations provide insight into the gating machinery of ENaC.


Assuntos
Ativação do Canal Iônico , Canais de Sódio/metabolismo , Sequência de Aminoácidos/genética , Animais , Eletroquímica , Canais Epiteliais de Sódio , Feminino , Humanos , Mutagênese Sítio-Dirigida , Oócitos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Canais de Sódio/química , Canais de Sódio/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa