RESUMO
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Reações Cruzadas , Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Nanopartículas/química , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Vacinação , Linfócitos B/imunologia , Camundongos Endogâmicos BALB CRESUMO
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
RESUMO
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/química , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinação , Adolescente , Adulto , Idoso , Animais , COVID-19/virologia , Chlorocebus aethiops , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Macaca nemestrina , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Adulto JovemRESUMO
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques.
Assuntos
Progressão da Doença , Imunidade Humoral , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Variação Genética , Centro Germinativo/imunologia , Centro Germinativo/virologia , Humanos , Interferon Tipo I/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Carga ViralRESUMO
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Assuntos
Desenho de Fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Terapia de Alvo Molecular/métodos , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/uso terapêutico , Toxinas Botulínicas/classificação , Toxinas Botulínicas/metabolismo , Simulação por Computador , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Temperatura Alta , Humanos , Influenza Humana/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Estabilidade Proteica , Proteínas/imunologia , Proteínas/metabolismo , TemperaturaRESUMO
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4ß7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4ß7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
Assuntos
Células Matadoras Naturais/imunologia , Monócitos/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Células Th1/imunologia , Vacinação , Vagina/imunologia , Vacinas Virais/imunologia , Animais , Feminino , Células Matadoras Naturais/patologia , Macaca mulatta , Monócitos/patologia , Células Th1/patologiaRESUMO
The HIV vaccine field now recognizes the potential importance of generating polyfunctional antibodies (Abs). The only clinical HIV vaccine trial to date to show significant efficacy (RV144) found that reduced infection rates correlated with the level of nonneutralizing Abs specific for the V2 region of the envelope glycoprotein. We have conducted a comprehensive preclinical reverse vaccinology-based vaccine program that has included the design and production and testing of numerous scaffolded V2 region immunogens. The most immunogenic vaccine regimen in nonhuman primates among those studied as part of this program consisted of a cocktail of three immunogens presenting V2 from different viruses and clades in the context of different scaffolds. Presently we demonstrate that the V2-specific Ab response from this regimen was highly durable and functionally diverse for the duration of the study (25 weeks after the final immunization). The total IgG binding response at this late time point exhibited only an â¼5× reduction in potency. Three immunizations appeared essential for the elicitation of a strong Ab-dependent cellular cytotoxicity (ADCC) response for all animals, as opposed to the Ab-dependent cellular phagocytosis (ADCP) and virus capture responses, which were comparably potent after only 2 immunizations. All functionalities measured were highly durable through the study period. Therefore, testing this vaccine candidate for its protective capacity is warranted.IMPORTANCE The only HIV vaccine trial for which protective efficacy was detected correlated this efficacy with V2-specific Abs that were effectively nonneutralizing. This result has fueled a decade of HIV vaccine research focused on designing an HIV vaccine capable of eliciting V2-focused, polyfunctional Abs that effectively bind HIV and trigger various leukocytes to kill the virus and restrict viral spread. From the numerous vaccine candidates designed and tested as part of our V2-focused preclinical vaccine program, we have identified immunogens and a vaccine regimen that induces a highly durable and polyfunctional V2-focused Ab response in rhesus macaques, described herein.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , HIV-1/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Formação de Anticorpos , Modelos Animais de Doenças , Antígenos HIV/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Imunização , Imunogenicidade da Vacina/imunologia , Proteínas do Envelope Viral/genéticaRESUMO
BCG vaccination has been demonstrated to increase levels of activated CD4+ T cells, thus potentially influencing mother-to-child transmission of human immunodeficiency virus (HIV). To assess the risk of BCG vaccination in HIV infection, we randomly assigned newborn rhesus macaques to receive BCG vaccine or remain unvaccinated and then undergo oral simian immunodeficiency virus (SIV) challenges 3 weeks later. We observed elevated levels of activated peripheral CD4+ T cells (ie, HLA-DR+CD38+CCR5+ CD4+ T cells) by week 3 after vaccination. BCG was also associated with an altered immune gene expression profile, as well as with monocyte activation in both peripheral blood and the draining axillary lymph node, indicating significant BCG vaccine-induced immune activation. Despite these effects, BCG vaccination did not increase the rate of SIV oral transmission or disease progression. Our findings therefore identify patterns of T-cell and monocyte activation that occur after BCG vaccination but do not support the hypothesis that BCG vaccination is a risk factor for postnatal HIV transmission or increased pathogenesis in infants.
Assuntos
Imunidade Ativa/efeitos dos fármacos , Macaca mulatta/imunologia , Retrovirus dos Símios/efeitos dos fármacos , Retrovirus dos Símios/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Feminino , Masculino , Modelos Animais , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Vacinação/métodosRESUMO
Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.
Assuntos
Engenharia Genética/métodos , HIV/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Macaca mulatta/virologia , Modelos Biológicos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral/imunologia , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
During chronic lentiviral infection, poor clinical outcomes correlate both with systemic inflammation and poor proliferative ability of HIV-specific T cells; however, the connection between the two is not clear. Myeloid-derived suppressor cells (MDSC), which expand during states of elevated circulating inflammatory cytokines, may link the systemic inflammation and poor T cell function characteristic of lentiviral infections. Although MDSC are partially characterized in HIV and SIV infection, questions remain regarding their persistence, activity, and clinical significance. We monitored MDSC frequency and function in SIV-infected rhesus macaques. Low MDSC frequency was observed prior to SIV infection. Post-SIV infection, MDSC were elevated in acute infection and persisted during 7 mo of combination antiretroviral drug therapy (cART). After cART interruption, we observed MDSC expansion of surprising magnitude, the majority being granulocytic MDSC. At all stages of infection, granulocytic MDSC suppressed CD4+ and CD8+ T cell proliferation in response to polyclonal or SIV-specific stimulation. In addition, MDSC frequency correlated significantly with circulating inflammatory cytokines. Acute and post-cART levels of viremia were similar, however, the levels of inflammatory cytokines and MDSC were more pronounced post-cART. Expanded MDSC during SIV infection, especially during the post-cART inflammatory cytokine surge, likely limit cellular responses to infection. As many HIV curative strategies require cART interruption to determine efficacy, our work suggests treatment interruption-induced MDSC may especially undermine the effectiveness of such strategies. MDSC depletion may enhance T cell responses to lentiviral infection and the effectiveness of curative approaches.
Assuntos
Antirretrovirais/administração & dosagem , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência SímiaAssuntos
Betacoronavirus/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , RNA Mensageiro/imunologia , RNA Viral/fisiologia , RNA Polimerase Dependente de RNA/genética , Vacinas Virais , Animais , COVID-19 , Amplificação de Genes , Humanos , Camundongos , Técnicas de Amplificação de Ácido Nucleico , Infecções por Orthomyxoviridae/imunologia , RNA Mensageiro/administração & dosagem , RNA Viral/genética , RNA Polimerase Dependente de RNA/fisiologia , SARS-CoV-2RESUMO
Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Imunização , Esquemas de Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Tecido Linfoide/imunologia , Macaca mulatta , Testes de Neutralização , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , VacinaçãoRESUMO
In the 30 years since the advent of the AIDS epidemic, the biomedical community has put forward a battery of molecular therapies that are based on the accumulated knowledge of a limited number of viral targets. Despite these accomplishments, the community still confronts unanswered foundational questions about HIV infection. What are the cellular or biomolecular processes behind HIV pathogenesis? Can we elucidate the characteristics that distinguish those individuals who are naturally resistant to either infection or disease progression? The discovery of simian immunodeficiency viruses (SIVs) and the ensuing development of in vivo, nonhuman primate (NHP) infection models was a tremendous advance, especially in abetting the exploration of vaccine strategies. And while there have been numerous NHP infection models and vaccine trials performed, fundamental questions remain regarding host-virus interactions and immune correlates of protection. These issues are, perhaps, most starkly illustrated with the appreciation that many species of African nonhuman primates are naturally infected with strains of SIV that do not cause any appreciable disease while replicating to viral loads that match or exceed those seen with pathogenic SIV infections in Asian species of nonhuman primates. The last decade has seen the establishment of high-throughput molecular profiling tools, such as microarrays for transcriptomics, SNP arrays for genome features, and LC-MS techniques for proteins or metabolites. These provide the capacity to interrogate a biological model at a comprehensive, systems level, in contrast to historical approaches that characterized a few genes or proteins in an experiment. These methods have already had revolutionary impacts in understanding human diseases originating within the host genome such as genetic disorders and cancer, and the methods are finding increasing application in the context of infectious disease. We will provide a review of the use of such 'omics investigations as applied to understanding of HIV pathogenesis and innate immunity, drawing from our own research as well as the literature examples that utilized in vitro cell-based models or studies in nonhuman primates. We will also discuss the potential for systems biology to help guide strategies for HIV vaccines that offer significant protection by either preventing acquisition or strongly suppressing viral replication levels post-infection.
Assuntos
HIV/patogenicidade , Imunidade Inata , Vírus da Imunodeficiência Símia/patogenicidade , Biologia de Sistemas/métodos , Síndrome da Imunodeficiência Adquirida/etiologia , Síndrome da Imunodeficiência Adquirida/imunologia , Animais , Genômica , Humanos , ProteômicaRESUMO
Mosquito borne flaviviruses, including dengue (DENV) and Zika (ZIKV) viruses, have caused global epidemics in areas with high HIV prevalence due to the expanded geographic range of arthropod vectors. Despite the occurrence of large flavivirus outbreaks in countries with high HIV prevalence, there is little knowledge regarding the effects of flavivirus infection in people living with HIV (PLWH). Here, we use a pigtail macaque model of HIV/AIDS to investigate the impact of simian immunodeficiency virus (SIV)-induced immunosuppression on ZIKV replication and pathogenesis. Early acute SIV infection induced expansion of peripheral ZIKV cellular targets and increased innate immune activation and peripheral blood mononuclear cells (PBMC) from SIV infected macaques were less permissive to ZIKV infection in vitro. In SIV-ZIKV co-infected animals, we found increased persistence of ZIKV in the periphery and tissues corresponding to alterations in innate cellular (monocytes, neutrophils) recruitment to the blood and tissues, decreased anti-ZIKV immunity, and chronic peripheral inflammatory and innate immune gene expression. Collectively, these findings suggest that untreated SIV infection may impair cellular innate responses and create an environment of chronic immune activation that promotes prolonged ZIKV viremia and persistence in the gastrointestinal tract. These results suggest that PLWH or other immunocompromised individuals could be at a higher risk for chronic ZIKV replication, which in turn could increase the timeframe of ZIKV transmission. Thus, PLWH are important populations to target during the deployment of vaccine and treatment strategies against ZIKV.
RESUMO
Cytokine release syndrome (CRS), commonly known as cytokine storm, is an acute systemic inflammatory response that is a significant global health threat. Interleukin-6 (IL-6) and interleukin-1 (IL-1) are key pro-inflammatory cytokines involved in CRS and are hence critical therapeutic targets. Current antagonists, such as tocilizumab and anakinra, target IL-6R/IL-1R but have limitations due to their long half-life and systemic anti-inflammatory effects, making them less suitable for acute or localized treatments. Here we present the de novo design of small protein antagonists that prevent IL-1 and IL-6 from interacting with their receptors to activate signaling. The designed proteins bind to the IL-6R, GP130 (an IL-6 co-receptor), and IL-1R1 receptor subunits with binding affinities in the picomolar to low-nanomolar range. X-ray crystallography studies reveal that the structures of these antagonists closely match their computational design models. In a human cardiac organoid disease model, the IL-1R antagonists demonstrated protective effects against inflammation and cardiac damage induced by IL-1ß. These minibinders show promise for administration via subcutaneous injection or intranasal/inhaled routes to mitigate acute cytokine storm effects.
Assuntos
Síndrome da Liberação de Citocina , Interleucina-6 , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Cristalografia por Raios X , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Interleucina-1/metabolismo , Interleucina-1/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/química , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Desenho de Fármacos , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/química , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Receptores Tipo I de Interleucina-1/metabolismoRESUMO
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Assuntos
Linfócitos T CD4-Positivos , Receptores de Antígenos Quiméricos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Infecções por HIV/terapia , Macaca mulatta/metabolismo , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/terapiaRESUMO
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
RESUMO
CCL20 is currently the only known chemokine ligand for the receptor CCR6, and is a mucosal chemokine involved in normal and pathological immune responses. Although nucleotide sequence data are available for ccl20 and ccr6 sequences from multiple species, the ferret ccl20 and ccr6 sequences have not been determined. To increase our understanding of immune function in ferret models of infection and vaccination, we have used RT-PCR to obtain the ferret ccl20 and ccr6 cDNA sequences and functionally characterize the encoded proteins. The open reading frames of both genes were highly conserved across species and mostly closely related to canine sequences. For functional analyses, single cell clones expressing ferret CCR6 were generated, a ferret CCL20/mouse IgG(2a) fusion protein (fCCL20-mIgG(2a)) was produced, and fCCL20 was chemically synthesized. Cell clones expressing ferret CCR6 responded chemotactically to fCCL20-mIgG2a fusion protein and synthetic ferret CCL20. Chemotaxis inhibition studies identified the polyphenol epigallocatechin-3-gallate and the murine γ-herpesvirus 68 M3 protein as inhibitors of fCCL20. Surface plasmon resonance studies revealed that EGCG bound directly to fCCL20. These results provide molecular characterization of previously unreported ferret immune gene sequences and for the first time identify a broad-spectrum small molecule inhibitor of CCL20 and reveal CCL20 as a target for the herpesviral M3 protein.
Assuntos
Quimiocina CCL20/metabolismo , Quimiotaxia , Furões/metabolismo , Receptores CCR6/metabolismo , Sequência de Aminoácidos , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Quimiocina CCL20/química , Quimiotaxia/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Cães , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Ligação Proteica/efeitos dos fármacos , Receptores CCR6/química , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais/farmacologiaRESUMO
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes an acute febrile illness. ZIKV can be transmitted between sexual partners and from mother to fetus. Infection is strongly associated with neurologic complications in adults, including Guillain-Barré syndrome and myelitis, and congenital ZIKV infection can result in fetal injury and congenital Zika syndrome (CZS). Development of an effective vaccine is imperative to protect against ZIKV vertical transmission and CZS. Recombinant Vesicular Stomatitis virus (rVSV) is a highly effective and safe vector for the delivery of foreign immunogens for vaccine purposes. Here, we evaluate an rVSV vaccine expressing the full length pre-membrane (prM) and ZIKV envelope (E) proteins (VSV-ZprME), shown to be immunogenic in murine models of ZIKV infection, for its capacity to induce immune responses in nonhuman primates. Moreover, we assess the efficacy of the rVSVΔM-ZprME vaccine in the protection of pigtail macaques against ZIKV infection. Administration of the rVSVΔM-ZprME vaccine was safe, but it did not induce robust anti-ZIKV T-cell responses, IgM or IgG antibodies, or neutralizing antibodies in most animals. Post ZIKV challenge, animals that received the rVSVΔM control vaccine lacking ZIKV antigen had higher levels of plasma viremia compared to animals that received the rVSVΔM-ZprME vaccine. Anti-ZIKV neutralizing Ab titers were detected in a single animal that received the rVSVΔM-ZprME vaccine that was associated with reduced plasma viremia. The overall suboptimal ZIKV-specific cellular and humoral responses post-immunization indicates the rVSVΔM-ZprME vaccine did not elicit an immune response in this pilot study. However, recall antibody response to the rVSVΔM-ZprME vaccine indicates it may be immunogenic and further developments to the vaccine construct could enhance its potential as a vaccine candidate in a nonhuman primate pre-clinical model.