Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2407501121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042697

RESUMO

This study explores the impact of electrostatic interactions and hydrogen bonding on tear film stability, a crucial factor for ocular surface health. While mucosal and meibomian layers have been extensively studied, the role of electrolytes in the aqueous phase remains unclear. Dry eye syndrome, characterized by insufficient tear quantity or quality, is associated with hyperosmolality, making electrolyte composition an important factor that might impact tear stability. Using a model buffer solution on a silica glass dome, we simulated physiologically relevant tear film conditions. Sodium chloride alone induced premature dewetting through salt crystal nucleation. In contrast, trace amounts of solutes with hydroxyl groups (sodium phosphate dibasic, potassium phosphate monobasic, and glucose) exhibited intriguing phenomena: quasi-stable films, solutal Marangoni-driven fluid influx increasing film thickness, and viscous fingering due to Saffman-Taylor instability. These observations are rationalized by the association of salt solutions with increased surface tension and the propensity of hydroxyl-group-containing solutes to engage in significant hydrogen bonding, altering local viscosity. This creates a viscosity contrast between the bulk buffer solution and the film region. Moreover, these solutes shield the glass dome, counteracting sodium chloride crystallization. These insights not only advance our understanding of tear film mechanics but also pave the way for predictive diagnostics in dry eye syndrome, offering a robust platform for personalized medical interventions based on individual tear film composition.


Assuntos
Eletrólitos , Ligação de Hidrogênio , Lágrimas , Lágrimas/química , Eletrólitos/química , Humanos , Viscosidade , Cloreto de Sódio/química , Fosfatos/química , Tensão Superficial , Eletricidade Estática , Síndromes do Olho Seco/metabolismo , Molhabilidade , Compostos de Potássio
2.
Genes Dev ; 31(13): 1308-1324, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28779009

RESUMO

Sufficient blood flow to tissues relies on arterial blood vessels, but the mechanisms regulating their development are poorly understood. Many arteries, including coronary arteries of the heart, form through remodeling of an immature vascular plexus in a process triggered and shaped by blood flow. However, little is known about how cues from fluid shear stress are translated into responses that pattern artery development. Here, we show that mice lacking endothelial Dach1 had small coronary arteries, decreased endothelial cell polarization, and reduced expression of the chemokine Cxcl12 Under shear stress in culture, Dach1 overexpression stimulated endothelial cell polarization and migration against flow, which was reversed upon CXCL12/CXCR4 inhibition. In vivo, DACH1 was expressed during early arteriogenesis but was down in mature arteries. Mature artery-type shear stress (high, uniform laminar) specifically down-regulated DACH1, while the remodeling artery-type flow (low, variable) maintained DACH1 expression. Together, our data support a model in which DACH1 stimulates coronary artery growth by activating Cxcl12 expression and endothelial cell migration against blood flow into developing arteries. This activity is suppressed once arteries reach a mature morphology and acquire high, laminar flow that down-regulates DACH1. Thus, we identified a mechanism by which blood flow quality balances artery growth and maturation.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Neovascularização Fisiológica/genética , Transdução de Sinais/genética , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Movimento Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Vasos Coronários/fisiopatologia , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Técnicas de Cultura de Órgãos , Receptores CXCR4/genética , Estresse Mecânico
3.
FASEB J ; 37(12): e23240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902497

RESUMO

One-way valves within lymphatic vessels are required for the efficient drainage of lymphatic fluids. Fluid flow is proposed to be a key cue in regulating both the formation and maintenance of lymphatic valves. However, to our knowledge, no previous study has systematically examined the response of LECs to the complex combination of spatially and temporally varying fluid flows that occur at lymphatic valves in vivo. We built an in vitro microfluidic device that reproduces key aspects of the flow environment found at lymphatic valves. Using this device, we found that a combination of spatially and temporally varying wall shear stresses (WSSs) led to upregulated transcription of PROX1 and FOXC2. In addition, we observed that combined spatial and temporal variations in WSS-modulated Ca2+ signaling and led to increased cellular levels of NFATc1. These observations suggest that the physical cues generated by the flow environment present within lymphatic valves may act to activate key regulatory pathways that contribute to valve maintenance.


Assuntos
Células Endoteliais , Vasos Linfáticos , Sinais (Psicologia) , Conhecimento , Dispositivos Lab-On-A-Chip , Fatores de Transcrição
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301872

RESUMO

The lifetime of bubbles, from formation to rupture, attracts attention because bubbles are often present in natural and industrial processes, and their geometry, drainage, coarsening, and rupture strongly affect those operations. Bubble rupture happens rapidly, and it may generate a cascade of small droplets or bubbles. Once a hole is nucleated within a bubble, it opens up with a variety of shapes and velocities depending on the liquid properties. A range of bubble rupture modes are reported in literature in which the reduction of a surface energy drives the rupture against inertial and viscous forces. The role of surface viscoelasticity of the liquid film in this colorful scenario is, however, still unknown. We found that the presence of interfacial viscoelasticity has a profound effect in the bubble bursting dynamics. Indeed, we observed different bubble bursting mechanisms upon the transition from viscous-controlled to surface viscoelasticity-controlled rupture. When this transition occurs, a bursting bubble resembling the blooming of a flower is observed. A simple modeling argument is proposed, leading to the prediction of the characteristic length scales and the number and shape of the bubble flower petals, thus paving the way for the control of liquid formulations with surface viscoelasticity as a key ingredient. These findings can have important implications in the study of bubble dynamics, with consequences for the numerous processes involving bubble rupture. Bubble flowering can indeed impact phenomena such as the spreading of nutrients in nature or the life of cells in bioreactors.


Assuntos
Simulação por Computador , Substâncias Viscoelásticas/química , Humanos , Propriedades de Superfície , Tensoativos
5.
Mol Pharm ; 18(4): 1656-1665, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656340

RESUMO

Monoclonal antibody (mAb) therapies are rapidly growing for the treatment of various diseases like cancer and autoimmune disorders. Many mAb drug products are sold as prefilled syringes and vials with liquid formulations. Typically, the walls of prefilled syringes are coated with silicone oil to lubricate the surfaces during use. MAbs are surface-active and adsorb to these silicone oil-solution interfaces, which is a potential source of aggregation. We studied formulations containing two different antibodies, mAb1 and mAb2, where mAb1 aggregated more when agitated in the presence of an oil-water interface. This directly correlated with differences in surface activity of the mAbs, studied with interfacial tension, surface mass adsorption, and interfacial rheology. The difference in interfacial properties between the mAbs was further reinforced in the coalescence behavior of oil droplets laden with mAbs. We also looked at the efficacy of surfactants, typically added to stabilize mAb formulations, in lowering adsorption and aggregation of mAbs at oil-water interfaces. We showed the differences between poloxamer-188 and polysorbate-20 in competing with mAbs for adsorption to interfaces and in lowering particulate and overall aggregation. Our results establish a direct correspondence between the adsorption of mAbs at oil-water interfaces and aggregation and the effect of surfactants in lowering aggregation by competitively adsorbing to these interfaces.


Assuntos
Anticorpos Monoclonais/química , Excipientes/química , Óleos de Silicone/química , Água/química , Adsorção , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Poloxâmero/química , Polissorbatos/química , Agregados Proteicos , Reologia , Tensão Superficial
6.
Biomacromolecules ; 22(8): 3386-3395, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34213889

RESUMO

There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.


Assuntos
Diabetes Mellitus , Insulina , Excipientes , Humanos , Insulina Regular Humana , Refrigeração
7.
Proc Natl Acad Sci U S A ; 115(40): 10106-10111, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232265

RESUMO

Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Celulose/efeitos adversos , Células Epiteliais/metabolismo , Etanolaminas/efeitos adversos , Bexiga Urinária/metabolismo , Escherichia coli Uropatogênica/metabolismo , Urotélio/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Celulose/farmacologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Etanolaminas/farmacologia , Humanos , Bexiga Urinária/microbiologia , Bexiga Urinária/ultraestrutura , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/ultraestrutura , Urotélio/microbiologia , Urotélio/ultraestrutura
8.
Soft Matter ; 16(21): 5094, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32432604

RESUMO

Correction for 'Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability' by Agnieszka Czakaj et al., Soft Matter, 2020, 16, 3981-3990, DOI: .

9.
Soft Matter ; 16(16): 3981-3990, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32250379

RESUMO

Stable aqueous foams composed of oppositely charged nanoparticles and surfactants have recently gained attention. We studied the draining of thin liquid films and the foam stability of aqueous mixtures of food grade cellulose nanocrystals (CNCs) and an oppositely charged surfactant - lauroyl ethyl arginate (LAE). Dynamic fluid film interferometry experiments with the bubble approaching the air/solution interface revealed a two-fold increase of the initial bubble film thickness and a maximum in drainage time at the optimal stoichiometry of LAE and CNC. The temporal evolution of the fluid film shape indicated a large contribution of structural forces to the film stability. The results of single liquid film drainage time and coalescence time experiments were partially correlated with bulk foam stability. With a further increase of LAE concentration, aggregation-induced foam destruction was observed. In the presence of a cationic surfactant, anisotropic and initially hydrophilic cellulose nanocrystals became partially hydrophobized and self-assembled at the interface. Cellulose nanocrystal shape anisotropy and wetting behaviour which have their origins in OH-exposed and buried crystalline planes are the sources of capillary interactions that promote CNC aggregation at planar and curved liquid/air interfaces. Dilatational and shear interfacial rheology experiments confirmed the formation of a highly elastic surfactant-nanoparticle interfacial layer. To the best of our knowledge, this is the first report on foaming properties for this system with fast adsorption kinetics influenced by CNC.

10.
Philos Trans A Math Phys Eng Sci ; 378(2174): 20190533, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32507094

RESUMO

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Rayleigh-Bénard or Marangoni-type instabilities. Here, we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh-Taylor instabilities due to the build-up of a dense layer at the air-liquid interface. We study experimentally the onset time (tp) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration (c0), molecular weight and polymer type. In dilute solutions, tp shows two limiting behaviours depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as [Formula: see text]. This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as [Formula: see text]. The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, [Formula: see text], viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in tp scaling as (ν/c0)2/3. This article is part of the theme issue 'Stokes at 200 (Part 1)'.

11.
Langmuir ; 35(41): 13340-13350, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31536356

RESUMO

The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.

12.
Solid State Nucl Magn Reson ; 102: 47-52, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376631

RESUMO

Contact lenses are worn by over 140 million people each year and tremendous research and development efforts contribute to the identification and selection of hydrogel components and production protocols to yield lenses optimized for chemical and physiological properties, eye health and comfort. The final molecular composition and extent of incorporation of different components in contact lenses is routinely estimated after lens production through the analysis of the soluble components that were not included in the lens, i.e. remaining starting materials. Examination of composition in the actual intact materials is always valued and can reveal details that are missed by only examining the non-incorporated components, for example identifying chemical changes to components in lenses during the production process. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the direct compositional analysis of insoluble and heterogeneous materials and is also uniquely suited to determining parameters of architecture in contact lenses. We utilized 13C cross-polarization magic angle spinning (CPMAS) NMR to examine and compare the carbon composition of soft contact lenses. 13C NMR spectra of individual polymer components enabled the determination of the approximate molecular carbon contributions of major lens components. Comparisons of the conventional etafilcon A hydrogel (1 Day Acuvue MOIST) lenses and silicone hydrogel lenses (Acuvue Oasys, Dailies Total 1, Clariti 1 Day, Biofinity, and Pure Vision) revealed major spectral differences, with considerable variation even among different silicone hydrogel lenses. The solid-state NMR approach provides a direct spectral reporting of carbon types in the hydrogel lens itself. This approach represents a valuable complementary analysis to benefit contact lens research and development and could be extended to isotopically labeled hydrogel lenses to map proximities and architecture between hydrogel components.

13.
Langmuir ; 34(2): 630-638, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29251942

RESUMO

Monoclonal antibodies (mAbs) are proteins that uniquely identify targets within the body, making them well-suited for therapeutic applications. However, these amphiphilic molecules readily adsorb onto air-solution interfaces where they tend to aggregate. We investigated two mAbs with different propensities to aggregate at air-solution interfaces. The understanding of the interfacial rheological behavior of the two mAbs is crucial in determining their aggregation tendency. In this work, we performed interfacial stress relaxation studies under compressive step strain using a custom-built dilatational rheometer. The dilatational relaxation modulus was determined for these viscoelastic interfaces. The initial value and the equilibrated value of relaxation modulus were larger in magnitude for the mAb with a higher tendency to aggregate in response to interfacial stress. We also performed single-bubble coalescence experiments using a custom-built dynamic fluid-film interferometer (DFI). The bubble coalescence times also correlated to the mAbs aggregation propensity and interfacial viscoelasticity. To study the influence of surfactants in mAb formulations, polyethylene glycol (PEG) was chosen as a model surfactant. In the mixed mAb/PEG system, we observed that the higher aggregating mAb coadsorbed with PEG and formed domains at the interface. In contrast, for the other mAb, PEG entirely covered the interface at the concentrations studied. We studied the mobility of the interfaces, which was manifested by the presence or the lack of Marangoni stresses. These dynamics were strongly correlated with the interfacial viscoelasticity of the mAbs. The influence of competitive destabilization in affecting the bubble coalescence times for the mixed mAb/PEG systems was also studied.

14.
Langmuir ; 33(40): 10501-10510, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28889742

RESUMO

In a refinery, undesired high levels of salt concentration in crude oils are reduced by the contact of water with crude oils, where an emulsion is formed. Later, the separation of the water from the desalted oil is essential for the quality of both wastewater discharge and refined oil. However, complex components of crude oils such as asphaltenes may stabilize these emulsions, causing difficulties in efficient separation. Here, we show the coalescence inhibition caused by asphaltene adsorption for both water-in-oil and oil-in-water emulsions, where the oil phase consists of a simple model of asphaltenes dissolved in toluene. We find that oil-in-water emulsions are less stable than water-in-oil emulsions by using a newly developed instrument where controlled experiments can be performed to measure the coalescence time of a single droplet against an oil/water interface as a function of asphaltene aging (associated with the adsorption process of asphaltene molecules onto the interfaces) and asphaltene concentration. Furthermore, we find that the coalescence time for water droplets exhibits a maximum because of a spontaneous emulsification at the oil/water interface that produces droplets consisting of asphaltene-laden water droplets.

15.
Nano Lett ; 16(1): 410-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26670737

RESUMO

The role of nanotopographical extracellular matrix (ECM) cues in vascular endothelial cell (EC) organization and function is not well-understood, despite the composition of nano- to microscale fibrillar ECMs within blood vessels. Instead, the predominant modulator of EC organization and function is traditionally thought to be hemodynamic shear stress, in which uniform shear stress induces parallel-alignment of ECs with anti-inflammatory function, whereas disturbed flow induces a disorganized configuration with pro-inflammatory function. Since shear stress acts on ECs by applying a mechanical force concomitant with inducing spatial patterning of the cells, we sought to decouple the effects of shear stress using parallel-aligned nanofibrillar collagen films that induce parallel EC alignment prior to stimulation with disturbed flow resulting from spatial wall shear stress gradients. Using real time live-cell imaging, we tracked the alignment, migration trajectories, proliferation, and anti-inflammatory behavior of ECs when they were cultured on parallel-aligned or randomly oriented nanofibrillar films. Intriguingly, ECs cultured on aligned nanofibrillar films remained well-aligned and migrated predominantly along the direction of aligned nanofibrils, despite exposure to shear stress orthogonal to the direction of the aligned nanofibrils. Furthermore, in stark contrast to ECs cultured on randomly oriented films, ECs on aligned nanofibrillar films exposed to disturbed flow had significantly reduced inflammation and proliferation, while maintaining intact intercellular junctions. This work reveals fundamental insights into the importance of nanoscale ECM interactions in the maintenance of endothelial function. Importantly, it provides new insight into how ECs respond to opposing cues derived from nanotopography and mechanical shear force and has strong implications in the design of polymeric conduits and bioengineered tissues.


Assuntos
Rastreamento de Células , Células Endoteliais/química , Matriz Extracelular/química , Estresse Mecânico , Vasos Sanguíneos/química , Movimento Celular , Proliferação de Células , Colágeno/química , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Nanofibras/química , Engenharia Tecidual
16.
Langmuir ; 32(9): 2192-8, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26840555

RESUMO

Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.

17.
Langmuir ; 32(17): 4203-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27076092

RESUMO

A new approach to study and understand the kinetics and mechanical properties of hydrates by interfacial rheology is presented. This is made possible using a "double wall ring" interfacial rheology cell that has been designed to provide the necessary temperature control. Cyclopentane and water are used to form hydrates, and this model system forms these structures at ambient pressures. Different temperature and water/hydrocarbon contact protocols are explored. Of particular interest is the importance of first contacting the hydrocarbon against ice crystals in order to initiate hydrate formation. Indeed, this is found to be the case, even though the hydrates may be created at temperatures above the melting point of ice. Once hydrates completely populate the hydrocarbon/water interface, strain sweeps of the interfacial elastic and viscous moduli are conducted to interrogate the mechanical response and fragility of the hydrate films. The dependence on temperature, Tf, by the kinetics of formation and the mechanical properties is reported, and the cyclopentane hydrate dissociation temperature was found to be between 6 and 7 °C. The formation time (measured from the moment when cyclopentane first contacts ice crystals) as well as the elastic modulus and the yield strain increase as Tf increases.

18.
Soft Matter ; 12(46): 9266-9279, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27752701

RESUMO

Understanding and enabling the control of the properties of foams is important for a variety of commercial processes and consumer products. In these systems, the role of surface active compounds has been the subject of many investigations using a wide range of techniques. The study of their influence on simplified geometries such as two bubbles in a liquid or a thin film of solution (such as in the well-known Scheludko cell), has yielded important fundamental understanding. Similarly, in this work an interferometric technique is used to study the dynamic evolution of the film formed by a single bubble being pressed against a planar air-liquid interface. Here interferometry is used to dynamically measure the total volume of liquid contained within the thin-film region between the bubble and the planar interface. Three different small-molecule, surfactant solutions were investigated and the data obtained via interferometry were compared to measurements of the density of bulk foams of the same solutions. The density measurements were collected with a simple, but novel technique using a conical-shaped bubbling apparatus. The results reveal a strong correlation between the measurements on single bubbles and complete foams. This suggests that further investigations using interferometric techniques can be instrumental to building a more detailed mechanistic understanding of how different surface-active compounds influence foam properties. The results also reveal that the commonly used assumption that surfactant-laden interfaces may be modeled as immobile, is too simplistic to accurately model interfaces with small-molecule surfactants.

19.
Soft Matter ; 12(14): 3293-302, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26891116

RESUMO

Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface.


Assuntos
Anticorpos Monoclonais/química , Elasticidade , Hidrodinâmica , Algoritmos , Estabilidade Proteica , Reologia/instrumentação , Tensoativos/química , Viscosidade
20.
Langmuir ; 31(13): 3820-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25280206

RESUMO

Insoluble lipids serve vital functions in our bodies and interact with biomedical devices, e.g., the tear film on a contact lens. Over a period of time, these naturally occurring lipids form interfacial coatings that modify the wettability characteristics of these foreign synthetic surfaces. In this study, we examine the deposition and consequences of tear film lipids on silicone hydrogel (SiHy) contact lenses. We use bovine meibum, which is a complex mixture of waxy esters, cholesterol esters, and lipids that is secreted from the meibomian glands located on the upper and lower eyelids of mammals. For comparison, we study two commercially available model materials: dipalmitoylphosphatidylcholine (DPPC) and cholesterol. Upon deposition, we find that DPPC and meibum remain closer to the SiHy surface than cholesterol, which diffuses further into the porous SiHy matrix. In addition, we also monitor the fate of unstable thin liquid films that consequently rupture and dewet on these lipid-decorated surfaces. This dewetting provides valuable qualitative and quantitative information about the wetting characteristics of these SiHy substrates. We observe that decorating the SiHy surface with simple model lipids such as DPPC and cholesterol increases the hydrophilicity, which consequently inhibits dewetting, whereas meibum behaves conversely.


Assuntos
Hidrogéis/química , Lipídeos/química , Silicones/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Bovinos , Colesterol/química , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa