Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5996-6006, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504451

RESUMO

2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.


Assuntos
Anisóis , Carbono , Compostos Férricos , Isótopos de Nitrogênio , Minerais , Ferro , Óxidos
2.
Environ Pollut ; 348: 123782, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484959

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluorine compounds known for their chemical and physical stability as well as their wide range of uses. Some PFAS are widely distributed in the environment, leading to concerns related to both environmental and human health. High temperature thermal treatment (i.e., incineration) has been utilized for PFAS treatment, but this requires significant infrastructure and energy, prompting interest in lower temperature approaches that may still lead to efficient destruction. Lower treatment temperatures, however, increase the potential for incomplete PFAS mineralization and formation of volatile organofluorine (VOF) products. Herein, we report the formation of novel VOF products that include chlorinated and brominated compounds during the thermal treatment of potassium perfluorohexane sulfonate (PFHxS), a representative perfluoroalkyl acid (PFAA). By comparing the gas chromatography-mass spectrometry (GC-MS) results of known VOF stocks to evolved VOF during thermal treatment of PFAS, the formation of perfluorohexyl chloride and perfluorohexyl bromide was observed when PFHxS was heated at temperatures between 275 and 475 °C in the presence of NaCl and NaBr, respectively. To our knowledge, this is the first report of chlorinated or brominated VOF products during thermal treatment of a PFAA. These findings suggest that a range of mixed halogenated VOF may form during thermal treatment of PFAS at relatively low temperature (e.g., 500 °C) and that these can be a function of salts present in the matrix.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Cloreto de Sódio , Temperatura , Alcanossulfonatos
3.
J Hazard Mater ; 471: 134291, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636231

RESUMO

One of the primary technologies currently being deployed for the removal of per- and polyfluoroalkyl substances (PFAS) from water is ion exchange (IX). For regenerable IX resins, concentrated PFAS in the resulting spent brine and/or still bottoms requires further treatment. This research demonstrated that PFAS in spent brine and still bottoms can be effectively degraded sonochemically at 1000 kHz. Overall, PFAS degradation was negatively impacted by high total organic carbon (TOC) and residual methanol (MeOH) solvent (up to 50 g/kg; 5% w:w), but was enhanced by the high chloride. The addition of caustic (up to 1 N NaOH) partially mitigated the inhibition by TOC and MeOH. Sonochemical degradation of individual PFAS compounds resulted in significant mineralization to form inorganic fluoride, but small quantities of volatile organic fluorine species (VOF) were noted. This is believed to be the first report of sonochemical degradation of PFAS in ion exchange regeneration wastes, and indicates the possibility for the application of this technology as part of a complete PFAS capture and destruction treatment train.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa